Skip to main content
Log in

Distribution Frames and Bases

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper we will consider, in the abstract setting of rigged Hilbert spaces, distribution valued functions and we will investigate conditions for them to constitute a ”continuous basis” for the smallest space \(\mathcal D\) of a rigged Hilbert space. This analysis requires suitable extensions of familiar notions as those of frames, Riesz bases and orthonormal bases. A motivation for this study comes from the Gel’fand–Maurin theorem which states, under certain conditions, the existence of a family of generalized eigenvectors of an essentially self-adjoint operator on a domain \(\mathcal D\) which acts like an orthonormal basis of the Hilbert space \(\mathcal H\). The corresponding object will be called here a Gel’fand distribution basis. The main results are obtained in terms of properties of a conveniently defined synthesis operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, S.T., Antoine, J.P., Gazeau, J.P.: Continuous frames in Hilbert spaces. Ann. Phys. 222, 1–37 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ali, S.T., Antoine, J.P., Gazeau, J.P.: Coherent States, Wavelet and Their Generalizations, 2nd edn. Springer, New York (2014)

    Book  MATH  Google Scholar 

  3. Antoine, J.-P., Trapani, C.: Partial Inner Product Spaces, Theory and Applications. Lecture Notes in Mathematics 1986. Springer, Berlin (2009)

    MATH  Google Scholar 

  4. Antoine, J.-P., Trapani, C.: Reproducing pairs of measurable functions and partial inner product spaces. Adv. Oper. Theory 2, 126–146 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Antoine, J.-P., Inoue, A., Trapani, C.: Partial *-algebras and their operator realizations. Kluwer, Dordrecht (2002)

    Book  MATH  Google Scholar 

  6. Antoine, J.-P., Speckbacher, M., Trapani, C.: Reproducing pairs of measurable functions. Acta Appl. Math. 150, 81101 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bagarello, F., Inoue, A., Trapani, C.: Non-self-adjoint Hamiltonians defined by Riesz bases. J. Math. Phys. 55, 033501 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bagarello, F., Gazeau, J.P., Szafraniec, F.H., Znojil, M. (eds.): Non-selfadjoint Operators in Quantum Physics: Mathematical Aspects. Wiley, New York (2015)

    MATH  Google Scholar 

  9. Bagarello, F., Passante, R., Trapani, C. (eds.): Non-Hermitian Hamiltonians in Quantum Physics. Springer Proceedings in Physics, vol. 184. Springer, New York (2016)

    Google Scholar 

  10. Balazs, P., Bayer, D., Rahimi, A.: Multipliers for continuous frames in Hilbert spaces. J. Phys. A 45, 244023 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bellomonte, G., Trapani, C.: Riesz-like bases in rigged Hilbert spaces. Z. Anal. Anwen. 35, 243–265 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Christensen, O.: Frames and Bases—An Introductory Course. Birkhäuser, Boston (2008)

    MATH  Google Scholar 

  13. Davies, E.B.: Spectral Theory and Differential Operators. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  14. Feichtinger, H.G., Gröchenig, K.: Gabor frames and time-frequency analysis of distributions. J. Funct. Anal. 146, 464–495 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feichtinger, H.G., Werther, T.: Atomic systems for subspaces. In: Zayed, L. (ed.) Proceedings SampTA 2001, Orlando, FL, pp. 163–165 (2001)

  16. Feichtinger, H.G., Zimmermann, G.: A Banach space of test functions for Gabor analysis. In: Feichtinger, H.G., Strohmer, T. (eds.) Gabor Analysis and Algorithms—Theory and Applications. Birkhäuser, Boston (1998)

    Google Scholar 

  17. Gǎvrutţa, L.: Frames and operators. Appl. Comput. Harmon. Anal. 32, 139–144 (2012)

    Article  MathSciNet  Google Scholar 

  18. Gel’fand, I.M., Vilenkin, N.Ya.: Generalized Functions, vol. 4. Academic Press, New York (1964)

    MATH  Google Scholar 

  19. Gel’fand, I.M., Shilov, G.E., Saletan, E.: Generalized Functions, vol. 3. Academic Press, New York (1967)

    Google Scholar 

  20. Gould, G.G.: The spectral representation of normal operators on a rigged Hilbert space. J. Lond. Math. Soc. s1–43, 745–754 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hosseini Giv, H., Radjabalipour, M.: On the structure and properties of lower bounded analytic frames. Iran. J. Sci. Technol. 37A3, 227–230 (2013)

    MathSciNet  Google Scholar 

  22. Jakobsen, M.S., Lemvig, J.: Density and duality theorems for regular Gabor frames. J. Funct. Anal. 270, 229–263 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kaiser, G.: A Friendly Guide to Wavelets. Birkhäuser, Boston (1994)

    MATH  Google Scholar 

  24. Köthe, G.: Topological Vector Spaces II. Springer, New York (1979)

    Book  MATH  Google Scholar 

  25. Kyriazis, G., Petrushev, P.: On the construction of frames for spaces of distributions. J. Funct. Anal. 257, 21592187 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, S., Ogawa, H.: Pseudoframes for subspaces with applications. J. Fourier Anal. Appl. 10, 409–431 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Messiah, A.: Quantum Mechanics, vol. I. North Holland, Amsterdam (1967)

    MATH  Google Scholar 

  28. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vols. 1, 2. Academic Press, New York (1980)

  29. Rudin, W.: Real and Complex analysis. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  30. Speckbacher, M., Balazs, P.: Reproducing pairs and the continuous nonstationary Gabor transform on LCA groups. J. Phys. A 48, 395201 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Speckbacher, M., Balazs, P.: Reproducing pairs and Gabor systems at critical density. J. Math. Anal. Appl. 455, 1072–1087 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Speckbacher, M., Balasz, P.: Frames, their relatives and reproducing kernel Hilbert spaces. arXiv:1704.02818 (2017)

Download references

Acknowledgements

The authors thank the referees for their useful comments and suggestions. This paper has been made within the framework of the Project INdAM-GNAMPA 2018 Alcuni aspetti di teoria spettrale di operatori e di algebre; frames in spazi di Hilbert rigged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Tschinke.

Additional information

Communicated by Hans G. Feichtinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trapani, C., Triolo, S. & Tschinke, F. Distribution Frames and Bases. J Fourier Anal Appl 25, 2109–2140 (2019). https://doi.org/10.1007/s00041-018-09659-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-018-09659-5

Keywords

Mathematics Subject Classification

Navigation