Skip to main content
Log in

On Pointwise Convergence for Schrödinger Operator in a Convex Domain

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper, we prove that the maximal inequality

$$\begin{aligned} \big \Vert \sup _{|t|<1}|e^{it\Delta _D}f(x,y)|\big \Vert _{L^2_{\mathrm{loc}}(\Omega )}\le C\Vert f\Vert _{H^s_D(\Omega )},\quad \forall ~f\in H^s_D(\Omega ) \end{aligned}$$

holds for any \(s>\tfrac{1}{2}\) with \(\Omega =\{(x,y)\in \mathbb {R}^2\mid x>0\}\) and \(\Delta _D=\partial _x^2+(1+x)\partial _y^2\). As a direct application, we obtain the pointwise convergence for the free Schrödinger equation \(i\partial _tu+\Delta _D u=0\) with initial data \(u(0)=f\) inside strictly convex domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Barcelo, J.A., Bennett, J., Carbery, A., Rogers, K.M.: On the dimension of divergence sets of dispersive equations. Math. Ann. 349, 599–622 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bahouri, H., Chemin, Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  4. Bourgain, J.: A remark on Schrödinger operators. Isreal J. Math. 77, 1–16 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourgain, J.: Some new estimates on osillatory integrals. In: Essays on Fourier Analysis in Honor of Elias M. Stein, Princeton, NJ 1991. Princeton Mathematical Series, vol. 42, pp. 83–112. Princeton University Press, New Jersey (1995)

  6. Bourgain, J.: On the Schrödinger maximal function in higher dimensions. Proc. Steklov Inst. Math. 280(1), 46–60 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgain, J.: A note on the Schrödinger maximal function. J. Anal. Math. 130, 393–396 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carleson, L.: Some analytical problems related to statistical mechanics. Euclidean Harmonic Analysisi. Lecture Notes in Mathematics, vol. 779, pp. 5–45, Springer, Berlin (1979)

  9. Cho, C., Lee, S., Vargas, A.: Problems on pointwise convergence of solutions to the Schrödinger equation. J. Fourier Anal. Appl. 18, 972–994 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cowling, M.: Pointwise behavior of solutions to Schrödinger equations. In: Harmonic Analysis (Cortona, 1982). Lecture Notes in Mathematics, vol. 992, pp. 83–90. Springer, Berlin (1983)

  11. Dahlberg, B.E.J., Kenig, C.E.: A note on the almost everywhere behavior of solutions to the Schrödinger equation. In: Proceedings of Italo-American Symposium in Harmonic Analysis, University of Minnesota. Lecture Notes in Mathematics, vol. 908, pp. 205–208. Springer, Berlin (1982)

  12. Demeter, C., Guo, S.: Schrödinger maximal function estimates via the pseudoconformal transformation. arXiv: 1608.07640

  13. Du, X., Guth, L., Li, X.: A sharp Schrödinger maximal estimate in \({\mathbb{R}}^{2}\). Ann. Math. 188, 607–640 (2017)

    Article  MATH  Google Scholar 

  14. Du, X., Zhang, R.: Sharp \(L^2\) estimate of Schrödinger maximal function in higher dimensions. arXiv:1805.02775

  15. Gigante, G., Soria, F.: On the the boundedness in \(H^{1/4}\) of the maximal square function associated with the Schrödinger equation. J. Lond. Math. Soc. 77, 51–68 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guth, L., Katz, N.: On the Erdös distinct distance problem in the plane. Ann. Math. 181, 155–190 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ivanovici, O., Lebeau, G., Planchon, F.: Dispersion for the wave equation inside strictly convex domain I: the Friedlander model case. Ann. Math. 180, 323–380 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ivanovici, O.: Counterexamples to Strichartz estimates for the wave equation in domains. Math. Anna. 347, 627–673 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee, S.: On pointwise convergence of the solutions to Schrödinger equation in \({\mathbb{R}}^{2}\). IMRN 2006, 32597 (2006)

    MATH  Google Scholar 

  20. Luca, R., Rogers, M.: An improved neccessary condition for Schrödinger maximal estimate. arXiv: 1506.05325

  21. Luca, R., Rogers, M.: Coherence on fractals versus pointwise convergence for the Schrödinger equation. Commun. Math. Phys. 351, 341–359 (2017)

    Article  MATH  Google Scholar 

  22. Melrose, R., Taylor, M.: Boundary problems for the wave equations with grazing and gliding rays. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.232.520&rep=rep1&type=pdf

  23. Miao, C., Yang, J., Zheng, J.: An improved maximal inequality for 2D fractional order Schrödinger operators. Stud. Math. 230, 121–165 (2015)

    MATH  Google Scholar 

  24. Miao, C., Zhang, J., Zheng, J.: Maximal estimates for Schrödinger equation with inverse-square potential. Pac. J. Math. 273, 1–19 (2015)

    Article  MATH  Google Scholar 

  25. Moyua, A., Vargas, A., Vega, L.: Schrödinger maximal function and restriction properties of the Fourier transform. IMRN 1996, 793–815 (1996)

    Article  MATH  Google Scholar 

  26. Olver, F.W.J.: Asymptotics and special functions. In: The Computer Science and Applied Mathematics. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York (1974)

  27. Rogers, K., Vargas, A., Vega, L.: Pointwise convergence of solutions to the nonelliptic Schrödinger equation. Indiana Univ. Math. J. 55(6), 1893–1906 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rogers, K., Villarroya, P.: Sharp estimates for maximal operators associated to the wave equation. Ark. Mat. 46, 143–151 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sjölin, P.: Regularity of solutions to the Schrödinger equation. Duke Math. J. 55(3), 699–715 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shao, S.: On localization of the Schrödinger maximal operator. arXiv: 1006.2787v1

  31. Tao, T.: A sharp bilinear restriction estimate for parabloids. Geom. Funct. Anal. 13(6), 1359–1384 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tao, T., Vargas, A.: A bilinear approach to cone multipliers. II. Appl. Geom. Funct. Anal. 10(1), 216–258 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vega, L.: Schrödinger equations: pointwise convergence to the initial data. Proc. Am. Math. Soc. 102(4), 874–878 (1988)

    MATH  Google Scholar 

  34. Walther, G.: Some \(L^p (L^\infty )\)- and \(L^2(L^2)\)-estimates for oscillatory Fourier transforms. In: Analysis of Divergence (Orono, ME, 1997), Applied and Numerical Harmonic Analysis, pp. 213–231. Birkhäuser, Boston, MA (1999)

Download references

Acknowledgements

The author would like to express his gratitude to the anonymous referees for their invaluable comments and suggestions. The author would like to thank Fabrice Planchon for his helpful discussions and encouragement. The author was also partly supported by the ANR-16-TERC-0006-01, ANADEL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiqiang Zheng.

Additional information

Communicated by Luis Vega.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J. On Pointwise Convergence for Schrödinger Operator in a Convex Domain. J Fourier Anal Appl 25, 2021–2036 (2019). https://doi.org/10.1007/s00041-018-09658-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-018-09658-6

Keywords

Mathematics Subject Classification

Navigation