Skip to main content
Log in

Endpoint Results for the Riesz Transform of the Ornstein–Uhlenbeck Operator

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper we introduce a new atomic Hardy space \(X^1(\gamma )\) adapted to the Gauss measure \(\gamma \), and prove the boundedness of the first order Riesz transform associated with the Ornstein–Uhlenbeck operator from \(X^1(\gamma )\) to \(L^1(\gamma )\). We also provide a new, short and almost self-contained proof of its weak-type (1, 1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Given a bounded operator T on \(L^2(\gamma )\), we say that a distribution \(K_T\) on \(\mathbb {R}^n \times \mathbb {R}^n\) is its Schwartz kernel with respect to the Lebesgue measure if

    $$\begin{aligned} Tf(x)= \int _{\mathbb {R}^n} K_T(x,y) f(y)\, \mathrm {d}y \end{aligned}$$

    for a.e. \(x\in \mathbb {R}^n\).

References

  1. Adams, R., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics (Amsterdam), vol. 140, 2nd edn. Elsevier/Academic Press, Amsterdam (2003)

    MATH  Google Scholar 

  2. Carbonaro, A., Mauceri, G., Meda, S.: \(H^1\) and \(BMO\) for certain locally doubling metric measure spaces of finite measure. Colloq. Math. 118(1), 13–41 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  4. Fabes, E., Gutiérrez, C., Scotto, R.: Weak-type estimates for the Riesz transforms associated with the Gaussian measure. Rev. Mat. Iberoam. 10(2), 229–281 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. García-Cuerva, J., Mauceri, G., Sjögren, P., Torrea, J.-L.: Higher-order Riesz operators for the Ornstein-Uhlenbeck semigroup. Potential Anal. 10(4), 379–407 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. García-Cuerva, J., Mauceri, G., Sjögren, P., Torrea, J.-L.: Spectral multipliers for the Ornstein-Uhlenbeck semigroup. J. Anal. Math. 78, 281–305 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. García-Cuerva, J., Mauceri, G., Meda, S., Sjögren, P., Torrea, J.-L.: Maximal operators for the holomorphic Ornstein-Uhlenbeck semigroup. J. Lond. Math. Soc. (2) 67(1), 219–234 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics, vol. 250, 3rd edn. Springer, New York (2014)

    MATH  Google Scholar 

  9. Grigor’yan, A.: Heat Kernel and Analysis on Manifolds. AMS/IP Studies in Advanced Mathematics, vol. 47. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  10. Maas, J., van Neerven, J., Portal, P.: Whitney coverings and the tent spaces \(T^1_q(\gamma )\) for the Gaussian measure. Ark. Mat. 50(2), 379–395 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mauceri, G., Meda, S.: \(BMO\) and \(H^1\) for the Ornstein-Uhlenbeck operator. J. Funct. Anal. 252(1), 278–313 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mauceri, G., Meda, S.: Equivalence of norms on finite linear combinations of atoms. Math. Z. 269, 253–260 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mauceri, G., Meda, S., Sjögren, P.: Sharp estimates for the Ornstein-Uhlenbeck operator. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3(3), 447–480 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Mauceri, G., Meda, S., Vallarino, M.: Hardy-type spaces on certain noncompact manifolds and applications. J. Lond. Math. Soc. (2) 84(1), 243–268 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mauceri, G., Meda, S., Sjögren, P.: Endpoint estimates for first-order Riesz transforms associated to the Ornstein-Uhlenbeck operator. Rev. Mat. Iberoam. 28(1), 77–91 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mauceri, G., Meda, S., Vallarino, M.: Atomic decomposition of Hardy type spaces on certain noncompact manifolds. J. Geom. Anal. 22(3), 864–891 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mauceri, G., Meda, S., Vallarino, M.: Sharp endpoint results for imaginary powers and Riesz transforms on certain noncompact manifolds. Studia Math. 224(2), 153–168 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mauceri, G., Meda, S., Vallarino, M.: Harmonic Bergman spaces, the Poisson equation and the dual of Hardy-type spaces on certain noncompact manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 14(4), 1157–1188 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Meda, S., Sjögren, P., Vallarino, M.: Atomic decompositions and operators on Hardy spaces. Rev. Un. Mat. Argent. 50, 15–22 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Menárguez, T., Pérez, S., Soria, F.: The Mehler maximal function: a geometric proof of the weak type 1. J. Lond. Math. Soc. (2) 61(3), 846–856 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Muckenhoupt, B.: Hermite conjugate expansions. Trans. Am. Math. Soc. 139, 243–260 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pérez, S.: The local part and the strong type for operators related to the Gaussian measure. J. Geom. Anal. 11(3), 491–507 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pérez, S., Soria, F.: Operators associated with the Ornstein-Uhlenbeck semigroup. J. Lond. Math. Soc. (2) 61(3), 857–871 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Portal, P.: Maximal and quadratic Gaussian Hardy spaces. Rev. Mat. Iberoam. 30(1), 79–108 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sjögren, P.: Operators associated with the Hermite semigroup—a survey. In: Proceedings of the Conference Dedicated to Professor Miguel de Guzmán (El Escorial, 1996). J. Fourier Anal. Appl. 3, Special Issue, 813–823 (1997)

Download references

Acknowledgements

It is a great pleasure to thank Giancarlo Mauceri and Stefano Meda for several fruitful discussions and their constant help and support. I also thank the anonymous referees for valuable comments and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Bruno.

Additional information

Communicated by Krzysztof Stempak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruno, T. Endpoint Results for the Riesz Transform of the Ornstein–Uhlenbeck Operator. J Fourier Anal Appl 25, 1609–1631 (2019). https://doi.org/10.1007/s00041-018-09648-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-018-09648-8

Keywords

Mathematics Subject Classification

Navigation