Skip to main content
Log in

Weighted Fourier Inequalities via Rearrangements

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

The method of using rearrangements to give sufficient conditions for Fourier inequalities between weighted Lebesgue spaces is revisited, a comparison between two known sufficient conditions is completed, and the method is extended to provide sufficient conditions for a new range of indices. When \(1<q<p<\infty \), simple conditions on weights ensure that the Fourier transform will map a weighted \(L^p\) space into a weighted \(L^q\) space. These are established in Theorems 1 and 4 of Benedetto and Heinig (J Fourier Anal Appl 9(1):1–37, 2003). The proofs apply when \(2<q<p\) and \(1<q<p<2\) but not in the remaining case, \(1<q<2<p\). Here, counterexamples are given to show that these simple conditions are no longer sufficient when \(1<q<2<p\). Also, various additional conditions are presented, any of which will restore sufficiency in that case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ariño, M.A., Muckenhoupt, B.: Maximal functions on classical Lorentz spaces and Hardy’s inequality with weights for nonincreasing functions. Trans. Am. Math. Soc. 320(2), 727–735 (1990). doi:10.2307/2001699

    Article  MathSciNet  MATH  Google Scholar 

  2. Benedetto, J.J., Heinig, H.P.: Lecture Notes in Mathematics. Hardy, weighted, spaces and the Laplace transform, Harmonic analysis, (Cortona, 1982), vol. 992, pp. 240–277. Springer, Berlin (1983). doi:10.1007/BFb0069163

    Book  Google Scholar 

  3. Benedetto, J.J., Heinig, H.P.: Weighted Fourier inequalities: new proofs and generalizations. J. Fourier Anal. Appl. 9(1), 1–37 (2003). doi:10.1007/s00041-003-0003-3

    Article  MathSciNet  MATH  Google Scholar 

  4. Benedetto, J.J., Heinig, H.P., Johnson, R.: Weighted Hardy spaces and the Laplace transform. II. Math. Nachr. 132, 29–55 (1987). doi:10.1002/mana.19871320104

    Article  MathSciNet  MATH  Google Scholar 

  5. Bennett, C., Sharpley, R.: Interpolation of Operators, Pure and Applied Mathematics, vol. 129. Academic Press Inc., Boston (1988)

    MATH  Google Scholar 

  6. Bradley, J.S.: Hardy inequalities with mixed norms. Can. Math. Bull. 21(4), 405–408 (1978). doi:10.4153/CMB-1978-071-7

    Article  MathSciNet  MATH  Google Scholar 

  7. Gogatishvili, A., Stepanov, V.D.: Reduction theorems for operators on the cones of monotone functions. J. Math. Anal. Appl. 405(1), 156–172 (2013). doi:10.1016/j.jmaa.2013.03.046

    Article  MathSciNet  MATH  Google Scholar 

  8. Grafakos, L.: Graduate Texts in Mathematics. Classical Fourier analysis, vol. 249, 2nd edn. Springer, New York (2008)

    Google Scholar 

  9. Heinig, H.P.: Weighted norm inequalities for classes of operators. Indiana Univ. Math. J. 33(4), 573–582 (1984). doi:10.1512/iumj.1984.33.33030

    Article  MathSciNet  MATH  Google Scholar 

  10. Heinig, H.P.: Estimates for operators in mixed weighted \(L^p\)-spaces. Trans. Am. Math. Soc. 287(2), 483–493 (1985). doi:10.2307/1999657

    Article  MathSciNet  MATH  Google Scholar 

  11. Jodeit, M., Jr., Torchinsky, A.: Inequalities for Fourier transforms. Studia Math., 37, 245–276 (1970/71)

    Article  MathSciNet  Google Scholar 

  12. Jurkat, W.B., Sampson, G.: On maximal rearrangement inequalities for the Fourier transform. Trans. Am. Math. Soc. 282(2), 625–643 (1984). doi:10.2307/1999257

    Article  MathSciNet  MATH  Google Scholar 

  13. Jurkat, W.B., Sampson, G.: On rearrangement and weight inequalities for the Fourier transform. Indiana Univ. Math. J. 33(2), 257–270 (1984). doi:10.1512/iumj.1984.33.33013

    Article  MathSciNet  MATH  Google Scholar 

  14. Kokilashvili, V., Meskhi, A., Persson, L.-E.: Weighted Norm Inequalities for Integral Transforms with Product Kernels. Mathematics Research Developments Series. Nova Science Publishers Inc., New York (2010)

    MATH  Google Scholar 

  15. Kufner, A., Maligranda, L., Persson, L.-E.: The Hardy inequality. About its history and some related results, Vydavatelský Servis, Plzeň (2007)

  16. Mastyło, M., Sinnamon, G.: A Calderón couple of down spaces. J. Funct. Anal. 240(1), 192–225 (2006). doi:10.1016/j.jfa.2006.05.007

    Article  MathSciNet  MATH  Google Scholar 

  17. Muckenhoupt, B.: Weighted norm inequalities for the Fourier transform. Trans. Am. Math. Soc. 276(2), 729–742 (1983). doi:10.2307/1999080

    Article  MathSciNet  MATH  Google Scholar 

  18. Muckenhoupt, B.: A note on two weight function conditions for a Fourier transform norm inequality. Proc. Am. Math. Soc. 88(1), 97–100 (1983). doi:10.2307/2045117

    Article  MathSciNet  MATH  Google Scholar 

  19. Okpoti, C.A., Persson, L.-E., Sinnamon, G.: An equivalence theorem for some integral conditions with general measures related to Hardy’s inequality. J. Math. Anal. Appl. 326(1), 398–413 (2007). doi:10.1016/j.jmaa.2006.03.015

    Article  MathSciNet  MATH  Google Scholar 

  20. Okpoti, C.A., Persson, L.-E., Sinnamon, G.: An equivalence theorem for some integral conditions with general measures related to Hardy’s inequality. II. J. Math. Anal. Appl. 337(1), 219–230 (2008). doi:10.1016/j.jmaa.2007.03.074

    Article  MathSciNet  MATH  Google Scholar 

  21. Rastegari, J.: Fourier Inequalities in Lorentz and Lebesgue Spaces. PhD Thesis, University of Western Ontario, London, Canada (2015)

  22. Rastegari, J., Sinnamon, G.: Fourier series in weighted Lorentz spaces. J. Fourier Anal. Appl. 22(5), 1192–1223 (2016). doi:10.1007/s00041-015-9455-5

    Article  MathSciNet  MATH  Google Scholar 

  23. Sinnamon, G.: The Fourier transform in weighted Lorentz spaces. Publ. Mat. 47(1), 3–29 (2003). doi:10.5565/PUBLMAT_47103_01

    Article  MathSciNet  MATH  Google Scholar 

  24. Sinnamon, G.: Fourier Inequalities and a New Lorentz Space, Banach and Function Spaces II. Yokohama Publishers, Yokohama (2008)

    MATH  Google Scholar 

  25. Sinnamon, G.: Bootstrapping weighted Fourier inequalities. J. Math. Inequal. 3(3), 341–346 (2009). doi:10.7153/jmi-03-34

    Article  MathSciNet  MATH  Google Scholar 

  26. Sinnamon, G., Stepanov, V.D.: The weighted Hardy inequality: new proofs and the case \(p=1\). J. Lond. Math. Soc. (2) 54(1), 89–101 (1996). doi:10.1112/jlms/54.1.89

    Article  MathSciNet  MATH  Google Scholar 

  27. Strömberg, J.-O., Wheeden, R.L.: Weighted norm estimates for the Fourier transform with a pair of weights. Trans. Am. Math. Soc. 318(1), 355–372 (1990). doi:10.2307/2001243

    Article  MathSciNet  MATH  Google Scholar 

  28. Wedestig, A.: Some new Hardy type inequalities and their limiting inequalities. JIPAM 4(3), Article 61 (electronic) (2003)

Download references

Acknowledgements

Supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gord Sinnamon.

Additional information

Communicated by Hans G. Feichtinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastegari, J., Sinnamon, G. Weighted Fourier Inequalities via Rearrangements. J Fourier Anal Appl 24, 1225–1248 (2018). https://doi.org/10.1007/s00041-017-9565-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-017-9565-3

Keywords

Mathematics Subject Classification

Navigation