The Efficient Computation of Fourier Transforms on Semisimple Algebras


We present a general diagrammatic approach to the construction of efficient algorithms for computing a Fourier transform on a semisimple algebra. This extends previous work wherein we derive best estimates for the computation of a Fourier transform for a large class of finite groups. We continue to find efficiencies by exploiting a connection between Bratteli diagrams and the derived path algebra and construction of Gel’fand–Tsetlin bases. Particular results include highly efficient algorithms for the Brauer, Temperley–Lieb, and Birman–Murakami–Wenzl algebras.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    We use here a standard definition of operation count as a complex addition and multiplication. In various places we may break out the number of additions and multiplications separately, but this will have no effect on the “big O” kinds of results we present here.

  2. 2.

    A straight-line program is a list of instructions for performing the operations \(\times , \div , +, -\) on inputs and precomputed values [7].


  1. 1.

    Baum, U.: Existence and efficient construction of fast Fourier transforms for supersolvable groups. Comput. Complex. 1(3), 235–256 (1991)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Baum, U., Clausen, M., Tietz, B.: Improved upper complexity bounds for the discrete Fourier transform. Appl. Algebra Eng. Commun. Comput. 2(1), 35–43 (1991)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Benkart, G., Ram, A., Shader, C.: Tensor product representations for orthosymplectic Lie superalgebras. J. Pure Appl. Algebra 130(1), 1–48 (1998)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Beth, T.: On the computational complexity of the general discrete Fourier transform. Theor. Comput. Sci. 51(3), 331–339 (1987)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Birman, J., Wenzl, H.: Braids, link polynomials and a new algebra. Trans. Am. Math. Soc. 313(1), 249–273 (1989)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Bracewell, R.N.: The Fourier Transformation and Its Applications, 2nd edn. McGraw-Hill, New York (1978)

    Google Scholar 

  7. 7.

    Bürgisser, P., Clausen, M., Shokrollahi, M.: Algebraic Complexity Theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 315. Springer, Berlin (1997). With the collaboration of Thomas Lickteig

    Google Scholar 

  8. 8.

    Clausen, M.: Fast generalized Fourier transforms. Theor. Comput. Sci. 67(1), 55–63 (1989)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Cooley, J.W.: The re-discovery of the fast Fourier transform algorithm. Mikrochim. Acta III, 33–45 (1987)

    Article  Google Scholar 

  10. 10.

    Cooley, J., Tukey, J.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Diaconis, P.: Average running time of the fast Fourier transform. J. Algorithms 1, 187–208 (1980)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Diaconis, P.: A generalization of spectral analysis with application to ranked data. Ann. Stat. 17(3), 949–979 (1989)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Diaconis, P., Rockmore, D.: Efficient computation of the Fourier transform on finite groups. J. Am. Math. Soc. 3(2), 297–332 (1990)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Diaconis, P., Ram, A.: Analysis of systematic scan Metropolis algorithms using Iwahori-Hecke algebra techniques. Mich. Math. J. 48, 157–190 (2000)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Elliott, D., Rao, K.: Fast Transforms: Algorithms, Analyses, Applications. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1982)

    Google Scholar 

  16. 16.

    Flath, D., Halverson, T., Herbig, K.: The planar rook algebra and Pascal’s triangle. Enseign. Math. (2) 55(1–2), 77–92 (2009)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Goodman, F.M., Wenzl, H.: The Temperley-Lieb algebra at roots of unity. Pac. J. Math. 161(2), 307–334 (1993)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Goodman, F., Hauschild, H.: Affine Birman-Wenzl-Murakami algebras and tangles in the solid torus. Fund. Math. 190, 77–137 (2006)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Goodman, F., de la Harpe, P., Jones, V.: Coxeter Graphs and Towers of Algebras. Mathematical Sciences Research Institute Publications, vol. 14. Springer, New York (1989)

    Google Scholar 

  20. 20.

    Grood, C.: The rook partition algebra. J. Comb. Theory A 113(2), 325–351 (2006)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Halverson, T., Ram, A.: Characters of algebras containing a Jones basic construction: the Temperley-Lieb, Okada, Brauer, and Birman-Wenzl algebras. Adv. Math. 116(2), 263–321 (1995)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Halverson, T., del Mas, E.: Representations of the Rook-Brauer algebra. Commun. Algebra 42(1), 423–443 (2014)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Kassel, C., Turaev, V.: Braid Groups. Graduate Texts in Mathematics, vol. 247. Springer, New York (2008). With the graphical assistance of Olivier Dodane

    Google Scholar 

  24. 24.

    Kondor, R.: Non-commutative harmonic analysis in multi-object tracking. In: Barber, D., Taylan Cemgil, A., Silvia, C. (eds.) Bayesian Time Series Models, pp. 277–284. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  25. 25.

    Lafferty, J.D., Rockmore, D.: Fast fourier analysis for \({{\rm SL}}_2\) over a finite field and related numerical experiments. Exp. Math. 1(2), 115–139 (1992)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Leduc, R., Ram, A.: A ribbon Hopf algebra approach to the irreducible representations of centralizer algebras: the Brauer, Birman-Wenzl, and type A Iwahori-Hecke algebras. Adv. Math. 125, 1–94 (1997)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Malandro, M.E.: Fast Fourier transforms for finite inverse semigroups. J. Algebra 324(2), 282–312 (2010)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Malandro, M.E.: Inverse semigroup spectral analysis for partially ranked data. Appl. Comput. Harmon. Anal. 35(1), 16–38 (2013)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Malandro, M.E., Fast, R.D.N.: Fourier transforms for the rook monoid. Trans. Am. Math. Soc. 362(2), 1009–1045 (2010)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Maslen, D.: The efficient computation of Fourier transforms on the symmetric group. Math. Comput. 67(223), 1121–1147 (1998)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Maslen , D., Rockmore, D.: Generalized FFTs—a survey of some recent results. In: Groups and Computation, II (New Brunswick, NJ, 1995). DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, vol. 28, pp. 183–237. American Mathematical Society, Providence (1997)

  32. 32.

    Maslen, D., Rockmore, D.: Separation of variables and the computation of Fourier transforms on finite groups. I. J. Am. Math. Soc. 10(1), 169–214 (1997)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Maslen, D., Rockmore, D.: Double coset decompositions and computational harmonic analysis on groups. J. Fourier Anal. Appl. 6(4), 349–388 (2000)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Maslen, D., Rockmore, D.: The Cooley-Tukey FFT and group theory. Not. Am. Math. Soc. 48(10), 1151–1160 (2001)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Maslen, D., Rockmore, D., Wolff, S.: Separation of variables and the computation of Fourier transforms on finite groups. II. J. Fourier Anal. Appl. (2016). doi:10.1007/s00041-016-9516-4

    MathSciNet  Article  Google Scholar 

  36. 36.

    Morton, H., Wasserman, A.: A Basis for the Birman-Wenzl Algebra, p. 29, revised 2000, unpublished manuscript. arXiv:1012.3116 (1989)

  37. 37.

    Munthe-Kaas, H.Z.: On group Fourier analysis and symmetry preserving discretizations of PDEs. J. Phys. A 39(19), 5563–5584 (2006)

    MathSciNet  Article  Google Scholar 

  38. 38.

    Murakami, J.: The Kauffman polynomial of links and representation theory. Osaka J. Math. 24(4), 745–758 (1987)

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Ram, A.: Representation Theory and Character Theory of Centralizer Algebras. ProQuest LLC, Ann Arbor (1991). PhD thesis, University of California, San Diego

  40. 40.

    Ram, A.: Seminormal representations of Weyl groups and Iwahori-Hecke algebras. Proc. Lond. Math. Soc. (3) 75(1), 99–133 (1997)

    MathSciNet  Article  Google Scholar 

  41. 41.

    Ridout, D., Saint-Aubin, Y.: Standard modules, induction and the structure of the Temperley-Lieb algebra. Adv. Theor. Math. Phys. 18(5), 957–1041 (2014)

    MathSciNet  Article  Google Scholar 

  42. 42.

    Rockmore, D.: Fast Fourier analysis for Abelian group extensions. Adv. Appl. Math. 11(2), 164–204 (1990)

    MathSciNet  Article  Google Scholar 

  43. 43.

    Rockmore, D.: Some applications of generalized FFTs. In: Groups and Computation, II (New Brunswick, NJ, 1995). DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 28, pp. 329–369. American Mathematical Society, Providence (1997)

  44. 44.

    Rockmore, D.: The FFT: an algorithm the whole family can use. Comput. Sci. Eng. 2(1), 60–64 (2000)

    Article  Google Scholar 

  45. 45.

    Rotman, J.J.: Advanced Modern Algebra. Prentice Hall Inc., Upper Saddle River (2002)

    Google Scholar 

  46. 46.

    Rui, H.: A criterion on the semisimple Brauer algebras. J. Comb. Theory A 111(1), 78–88 (2005)

    MathSciNet  Article  Google Scholar 

  47. 47.

    Wenzl, H.: On the structure of Brauer’s centralizer algebras. Ann. Math. (2) 128(1), 173–193 (1988)

    MathSciNet  Article  Google Scholar 

  48. 48.

    Wolff, S.: Random walks on the BMW monoid: an algebraic approach (in preparation)

  49. 49.

    Wood, J.: Some applications of the Fourier transform in algebraic coding theory. In: Algebra for Secure and Reliable Communication Modeling. Contemporary Mathematics, vol. 642, pp. 1–40. American Mathematical Society, Providence (2015)

Download references


Daniel N. Rockmore was partially supported by AFOSR Award FA9550-11-1-0166 and the Neukom Institute for Computational Science at Dartmouth College. Sarah Wolff was partially supported by an NSF Graduate Fellowship.

Author information



Corresponding author

Correspondence to Sarah Wolff.

Additional information

Communicated by Thomas Strohmer.


Appendix A: Brauer Algebra Combinatorial Lemmas

Let \(\mathcal {B}\) denote the Bratteli diagram associated to the chain of Brauer algebras \(\mathcal {B}r_n>\mathcal {B}r_{n-1}>\cdots \mathcal {B}r_1>\mathcal {B}r_0\) (Fig. 1). The following two lemmas provide a bound for \(\#{\text {Hom}}(\mathcal {H}_i^n\uparrow G;\mathcal {B})\), for \(\mathcal {H}_i^n\) as in Fig. 12.

Lemma A.1

  1. (1)

    \(\displaystyle \#{\text {Hom}}(\mathcal {H}_i^n\uparrow G;\mathcal {B})=\frac{ \dim (\mathcal {B}r_{n-1})}{\dim (\mathcal {B}r_{i-1})}\#{\text {Hom}}(\mathcal {H}_i^i\uparrow G;\mathcal {B}),\)

  2. (2)

    \(\#{\text {Hom}}(\mathcal {H}_i^i\uparrow G;\mathcal {B})\)

    $$\begin{aligned} \le 2\displaystyle \frac{\dim (\mathcal {B}r_{i-1})^2}{\dim (\mathcal {B}r_{i-2})}+\sum _{\beta _{i-1}\in \mathcal {B}^{i-1}}(4{\text {jmp}}(\beta _{i-1})^2+2{\text {jmp}}(\beta _{i-1})+1)(d_{\beta _{i-1}})^2, \end{aligned}$$

where \({\text {jmp}}\) denotes the jump of a partition, i.e, the number of ways to remove a single box to form a new partition.


Part (1) has the same proof as Lemma D.3 in [35].

To prove (2), consider

$$\begin{aligned} \begin{array}{l}\#{\text {Hom}}(\mathcal {H}_i^i\uparrow G;\mathcal {B})\\ =\displaystyle \sum _{\alpha _j,\beta _j\in \mathcal {B}^j}M_\mathcal {B}(\beta _{i-1},\beta _{i-2})M_\mathcal {B}(\alpha _{i},\alpha _{i-1})M_\mathcal {B}(\alpha _{i},\beta _{i-1})M_\mathcal {B}(\alpha _{i-1},\beta _{i-2})d_{\beta _{i-1}}d_{\alpha _{i-1}}\\ =\displaystyle \sum _{\alpha _{i-1}\ne \beta _{i-1}}+\sum _{\alpha _{i-1}=\beta _{i-1}},\end{array} \end{aligned}$$

for \(\displaystyle \sum _{\alpha _{i-1}\ne \beta _{i-1}}\) the sum

$$\begin{aligned} \begin{array}{l}\displaystyle \sum _{\begin{array}{c} \alpha _j,\beta _j\in \mathcal {B}^j\\ \alpha _{i-1}\ne \beta _{i-1} \end{array}}M_\mathcal {B}(\beta _{i-1},\beta _{i-2})M_\mathcal {B}(\alpha _{i},\alpha _{i-1})M_\mathcal {B}(\alpha _{i},\beta _{i-1})M_\mathcal {B}(\alpha _{i-1},\beta _{i-2})d_{\beta _{i-1}}d_{\alpha _{i-1}}\end{array} \end{aligned}$$

and \(\displaystyle \sum _{\alpha _{i-1}=\beta _{i-1}}\) the sum

$$\begin{aligned} \begin{array}{l}\displaystyle \sum _{\begin{array}{c} \alpha _j,\beta _j\in \mathcal {B}^j\\ \alpha _{i-1}=\beta _{i-1} \end{array}}M_\mathcal {B}(\beta _{i-1},\beta _{i-2})^2M_\mathcal {B}(\alpha _{i},\beta _{i-1})^2(d_{\beta _{i-1}})^2.\end{array} \end{aligned}$$

First suppose \(\alpha _{i-1}\) and \(\beta _{i-1}\) are distinct partitions. Then they jointly determine \(\alpha _i\) up to two choices. This is clear if \(\alpha _{i-1}\) and \(\beta _{i-1}\) both partition k, as they then jointly determine exactly one partition of \(k+1\) and one partition of \(k-1\). Now suppose, without loss of generality, that \(\alpha _{i-1}\) is a partition of k while \(\beta _{i-1}\) is a partition of \(k-2\). Then to both be connected to a vertex, \(\alpha _i\), at level i, \(\beta _{i-1}\) must be obtained from \(\alpha _{i-1}\) by removing two boxes, which can only be done in two ways.

Then as in the proof of Lemma D.3 of [35],

$$\begin{aligned} \sum _{\alpha _{i-1}\ne \beta _{i-1}}\le 2\left( \frac{\dim (\mathcal {B}r_{i-1})^2}{\dim (\mathcal {B}r_{i-2})}-\sum _{}{\text {jmp}}(\beta _{i-1})(d_{\beta _{i-1}})^2\right) . \end{aligned}$$

Now suppose \(\alpha _{i-1}=\beta _{i-1}\). Then \(\alpha _i\) is obtained from \(\beta _{i-1}\) by either adding or removing a box, and similarly for \(\beta _{i-2}\). Thus,

$$\begin{aligned} \sum _{\alpha _{i-1}=\beta _{i-1}}=\sum _{\beta _{i-1}\in \mathcal {B}^{i-1}}(2{\text {jmp}}(\beta _{i-1})+1)(2{\text {jmp}}(\beta _{i-1})+1)(d_{\beta _{i-1}})^2. \end{aligned}$$

Summing Eqs. (5) and (6) gives part (2). \(\square \)

Combining Lemma A.1 with the fact that \({\text {jmp}}(\beta _i)^2\le 2i\) (see proof of [30, Lemma 5.3]) gives the following bound:

Corollary A.2

\(\#{\text {Hom}}(\mathcal {H}_i^n\uparrow G;\mathcal {B})\le \frac{16i-17}{2n-1}\dim (\mathcal {B}r_n)\).

Appendix B: Temperley–Lieb Algebra Combinatorial Lemmas

Let \(\mathcal {B}\) denote the Bratteli diagram associated to the chain of Temperley–Lieb algebras \(\mathcal {T}_n>\mathcal {T}_{n-1}>\cdots \mathcal {T}_1>\mathcal {T}_0\) (Fig. 13). The following two lemmas provide a bound for \(\#{\text {Hom}}(\mathcal {H}_i^n\uparrow G;\mathcal {B})\), for \(\mathcal {H}_i^n\) as in Fig. 12.

Lemma B.1

  1. (1)

    \(\displaystyle \#{\text {Hom}}(\mathcal {H}_i^n\uparrow G;\mathcal {B})=\frac{ \dim (\mathcal {T}_{n-1})}{\dim (\mathcal {T}_{i-1})}\#{\text {Hom}}(\mathcal {H}_i^i\uparrow G;\mathcal {B}),\)

  2. (2)

    \(\#{\text {Hom}}(\mathcal {H}_i^i\uparrow G;\mathcal {B})\le \displaystyle \frac{\dim (\mathcal {T}_{i-1})^2}{\dim (\mathcal {T}_{i-2})}+\sum _{\beta _{i-1}\in \mathcal {B}^{i-1}}({\text {jmp}}(\beta _{i-1})^2(d_{\beta _{i-1}})^2.\)


This is exactly Lemma 5.2 of [30], replacing the order of the symmetric group with the dimension of the Temperley–Lieb algebra. \(\square \)

Combining Lemma A.1 with the fact that \({\text {jmp}}(\beta _i)^2\le 2i\)

Corollary B.2

\(\#{\text {Hom}}(\mathcal {H}_i^n\uparrow G;\mathcal {B})\le \frac{(4i-6+2i^2)(n+1)(n)}{i(2n)(2n-1)}\dim (\mathcal {T}_n)\).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maslen, D., Rockmore, D.N. & Wolff, S. The Efficient Computation of Fourier Transforms on Semisimple Algebras. J Fourier Anal Appl 24, 1377–1400 (2018).

Download citation


  • Fast Fourier transform
  • Bratteli diagram
  • Path algebra
  • Quiver

Mathematics Subject Classification

  • 65250
  • 43A30
  • 05E40
  • 20C15