The Efficient Computation of Fourier Transforms on Semisimple Algebras

Article

Abstract

We present a general diagrammatic approach to the construction of efficient algorithms for computing a Fourier transform on a semisimple algebra. This extends previous work wherein we derive best estimates for the computation of a Fourier transform for a large class of finite groups. We continue to find efficiencies by exploiting a connection between Bratteli diagrams and the derived path algebra and construction of Gel’fand–Tsetlin bases. Particular results include highly efficient algorithms for the Brauer, Temperley–Lieb, and Birman–Murakami–Wenzl algebras.

Keywords

Fast Fourier transform Bratteli diagram Path algebra Quiver 

Mathematics Subject Classification

65250 43A30 05E40 20C15 

References

  1. 1.
    Baum, U.: Existence and efficient construction of fast Fourier transforms for supersolvable groups. Comput. Complex. 1(3), 235–256 (1991)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Baum, U., Clausen, M., Tietz, B.: Improved upper complexity bounds for the discrete Fourier transform. Appl. Algebra Eng. Commun. Comput. 2(1), 35–43 (1991)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Benkart, G., Ram, A., Shader, C.: Tensor product representations for orthosymplectic Lie superalgebras. J. Pure Appl. Algebra 130(1), 1–48 (1998)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Beth, T.: On the computational complexity of the general discrete Fourier transform. Theor. Comput. Sci. 51(3), 331–339 (1987)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Birman, J., Wenzl, H.: Braids, link polynomials and a new algebra. Trans. Am. Math. Soc. 313(1), 249–273 (1989)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bracewell, R.N.: The Fourier Transformation and Its Applications, 2nd edn. McGraw-Hill, New York (1978)MATHGoogle Scholar
  7. 7.
    Bürgisser, P., Clausen, M., Shokrollahi, M.: Algebraic Complexity Theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 315. Springer, Berlin (1997). With the collaboration of Thomas LickteigGoogle Scholar
  8. 8.
    Clausen, M.: Fast generalized Fourier transforms. Theor. Comput. Sci. 67(1), 55–63 (1989)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cooley, J.W.: The re-discovery of the fast Fourier transform algorithm. Mikrochim. Acta III, 33–45 (1987)CrossRefGoogle Scholar
  10. 10.
    Cooley, J., Tukey, J.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Diaconis, P.: Average running time of the fast Fourier transform. J. Algorithms 1, 187–208 (1980)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Diaconis, P.: A generalization of spectral analysis with application to ranked data. Ann. Stat. 17(3), 949–979 (1989)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Diaconis, P., Rockmore, D.: Efficient computation of the Fourier transform on finite groups. J. Am. Math. Soc. 3(2), 297–332 (1990)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Diaconis, P., Ram, A.: Analysis of systematic scan Metropolis algorithms using Iwahori-Hecke algebra techniques. Mich. Math. J. 48, 157–190 (2000)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Elliott, D., Rao, K.: Fast Transforms: Algorithms, Analyses, Applications. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1982)MATHGoogle Scholar
  16. 16.
    Flath, D., Halverson, T., Herbig, K.: The planar rook algebra and Pascal’s triangle. Enseign. Math. (2) 55(1–2), 77–92 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Goodman, F.M., Wenzl, H.: The Temperley-Lieb algebra at roots of unity. Pac. J. Math. 161(2), 307–334 (1993)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Goodman, F., Hauschild, H.: Affine Birman-Wenzl-Murakami algebras and tangles in the solid torus. Fund. Math. 190, 77–137 (2006)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Goodman, F., de la Harpe, P., Jones, V.: Coxeter Graphs and Towers of Algebras. Mathematical Sciences Research Institute Publications, vol. 14. Springer, New York (1989)CrossRefMATHGoogle Scholar
  20. 20.
    Grood, C.: The rook partition algebra. J. Comb. Theory A 113(2), 325–351 (2006)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Halverson, T., Ram, A.: Characters of algebras containing a Jones basic construction: the Temperley-Lieb, Okada, Brauer, and Birman-Wenzl algebras. Adv. Math. 116(2), 263–321 (1995)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Halverson, T., del Mas, E.: Representations of the Rook-Brauer algebra. Commun. Algebra 42(1), 423–443 (2014)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Kassel, C., Turaev, V.: Braid Groups. Graduate Texts in Mathematics, vol. 247. Springer, New York (2008). With the graphical assistance of Olivier DodaneGoogle Scholar
  24. 24.
    Kondor, R.: Non-commutative harmonic analysis in multi-object tracking. In: Barber, D., Taylan Cemgil, A., Silvia, C. (eds.) Bayesian Time Series Models, pp. 277–284. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  25. 25.
    Lafferty, J.D., Rockmore, D.: Fast fourier analysis for \({{\rm SL}}_2\) over a finite field and related numerical experiments. Exp. Math. 1(2), 115–139 (1992)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Leduc, R., Ram, A.: A ribbon Hopf algebra approach to the irreducible representations of centralizer algebras: the Brauer, Birman-Wenzl, and type A Iwahori-Hecke algebras. Adv. Math. 125, 1–94 (1997)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Malandro, M.E.: Fast Fourier transforms for finite inverse semigroups. J. Algebra 324(2), 282–312 (2010)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Malandro, M.E.: Inverse semigroup spectral analysis for partially ranked data. Appl. Comput. Harmon. Anal. 35(1), 16–38 (2013)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Malandro, M.E., Fast, R.D.N.: Fourier transforms for the rook monoid. Trans. Am. Math. Soc. 362(2), 1009–1045 (2010)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Maslen, D.: The efficient computation of Fourier transforms on the symmetric group. Math. Comput. 67(223), 1121–1147 (1998)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Maslen , D., Rockmore, D.: Generalized FFTs—a survey of some recent results. In: Groups and Computation, II (New Brunswick, NJ, 1995). DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, vol. 28, pp. 183–237. American Mathematical Society, Providence (1997)Google Scholar
  32. 32.
    Maslen, D., Rockmore, D.: Separation of variables and the computation of Fourier transforms on finite groups. I. J. Am. Math. Soc. 10(1), 169–214 (1997)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Maslen, D., Rockmore, D.: Double coset decompositions and computational harmonic analysis on groups. J. Fourier Anal. Appl. 6(4), 349–388 (2000)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Maslen, D., Rockmore, D.: The Cooley-Tukey FFT and group theory. Not. Am. Math. Soc. 48(10), 1151–1160 (2001)MathSciNetMATHGoogle Scholar
  35. 35.
    Maslen, D., Rockmore, D., Wolff, S.: Separation of variables and the computation of Fourier transforms on finite groups. II. J. Fourier Anal. Appl. (2016). doi:10.1007/s00041-016-9516-4
  36. 36.
    Morton, H., Wasserman, A.: A Basis for the Birman-Wenzl Algebra, p. 29, revised 2000, unpublished manuscript. arXiv:1012.3116 (1989)
  37. 37.
    Munthe-Kaas, H.Z.: On group Fourier analysis and symmetry preserving discretizations of PDEs. J. Phys. A 39(19), 5563–5584 (2006)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Murakami, J.: The Kauffman polynomial of links and representation theory. Osaka J. Math. 24(4), 745–758 (1987)MathSciNetMATHGoogle Scholar
  39. 39.
    Ram, A.: Representation Theory and Character Theory of Centralizer Algebras. ProQuest LLC, Ann Arbor (1991). PhD thesis, University of California, San DiegoGoogle Scholar
  40. 40.
    Ram, A.: Seminormal representations of Weyl groups and Iwahori-Hecke algebras. Proc. Lond. Math. Soc. (3) 75(1), 99–133 (1997)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Ridout, D., Saint-Aubin, Y.: Standard modules, induction and the structure of the Temperley-Lieb algebra. Adv. Theor. Math. Phys. 18(5), 957–1041 (2014)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Rockmore, D.: Fast Fourier analysis for Abelian group extensions. Adv. Appl. Math. 11(2), 164–204 (1990)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Rockmore, D.: Some applications of generalized FFTs. In: Groups and Computation, II (New Brunswick, NJ, 1995). DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 28, pp. 329–369. American Mathematical Society, Providence (1997)Google Scholar
  44. 44.
    Rockmore, D.: The FFT: an algorithm the whole family can use. Comput. Sci. Eng. 2(1), 60–64 (2000)CrossRefGoogle Scholar
  45. 45.
    Rotman, J.J.: Advanced Modern Algebra. Prentice Hall Inc., Upper Saddle River (2002)MATHGoogle Scholar
  46. 46.
    Rui, H.: A criterion on the semisimple Brauer algebras. J. Comb. Theory A 111(1), 78–88 (2005)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Wenzl, H.: On the structure of Brauer’s centralizer algebras. Ann. Math. (2) 128(1), 173–193 (1988)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Wolff, S.: Random walks on the BMW monoid: an algebraic approach (in preparation)Google Scholar
  49. 49.
    Wood, J.: Some applications of the Fourier transform in algebraic coding theory. In: Algebra for Secure and Reliable Communication Modeling. Contemporary Mathematics, vol. 642, pp. 1–40. American Mathematical Society, Providence (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • David Maslen
    • 1
  • Daniel N. Rockmore
    • 2
  • Sarah Wolff
    • 3
  1. 1.HBK Capital ManagementNew YorkUSA
  2. 2.Department of Mathematics and Computer ScienceDartmouth CollegeHanoverUSA
  3. 3.Department of Mathematics and Computer ScienceDenison UniversityGranvilleUSA

Personalised recommendations