Journal of Fourier Analysis and Applications

, Volume 24, Issue 5, pp 1377–1400 | Cite as

The Efficient Computation of Fourier Transforms on Semisimple Algebras

  • David Maslen
  • Daniel N. Rockmore
  • Sarah WolffEmail author


We present a general diagrammatic approach to the construction of efficient algorithms for computing a Fourier transform on a semisimple algebra. This extends previous work wherein we derive best estimates for the computation of a Fourier transform for a large class of finite groups. We continue to find efficiencies by exploiting a connection between Bratteli diagrams and the derived path algebra and construction of Gel’fand–Tsetlin bases. Particular results include highly efficient algorithms for the Brauer, Temperley–Lieb, and Birman–Murakami–Wenzl algebras.


Fast Fourier transform Bratteli diagram Path algebra Quiver 

Mathematics Subject Classification

65250 43A30 05E40 20C15 



Daniel N. Rockmore was partially supported by AFOSR Award FA9550-11-1-0166 and the Neukom Institute for Computational Science at Dartmouth College. Sarah Wolff was partially supported by an NSF Graduate Fellowship.


  1. 1.
    Baum, U.: Existence and efficient construction of fast Fourier transforms for supersolvable groups. Comput. Complex. 1(3), 235–256 (1991)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baum, U., Clausen, M., Tietz, B.: Improved upper complexity bounds for the discrete Fourier transform. Appl. Algebra Eng. Commun. Comput. 2(1), 35–43 (1991)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Benkart, G., Ram, A., Shader, C.: Tensor product representations for orthosymplectic Lie superalgebras. J. Pure Appl. Algebra 130(1), 1–48 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Beth, T.: On the computational complexity of the general discrete Fourier transform. Theor. Comput. Sci. 51(3), 331–339 (1987)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Birman, J., Wenzl, H.: Braids, link polynomials and a new algebra. Trans. Am. Math. Soc. 313(1), 249–273 (1989)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bracewell, R.N.: The Fourier Transformation and Its Applications, 2nd edn. McGraw-Hill, New York (1978)zbMATHGoogle Scholar
  7. 7.
    Bürgisser, P., Clausen, M., Shokrollahi, M.: Algebraic Complexity Theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 315. Springer, Berlin (1997). With the collaboration of Thomas LickteigCrossRefGoogle Scholar
  8. 8.
    Clausen, M.: Fast generalized Fourier transforms. Theor. Comput. Sci. 67(1), 55–63 (1989)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cooley, J.W.: The re-discovery of the fast Fourier transform algorithm. Mikrochim. Acta III, 33–45 (1987)CrossRefGoogle Scholar
  10. 10.
    Cooley, J., Tukey, J.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Diaconis, P.: Average running time of the fast Fourier transform. J. Algorithms 1, 187–208 (1980)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Diaconis, P.: A generalization of spectral analysis with application to ranked data. Ann. Stat. 17(3), 949–979 (1989)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Diaconis, P., Rockmore, D.: Efficient computation of the Fourier transform on finite groups. J. Am. Math. Soc. 3(2), 297–332 (1990)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Diaconis, P., Ram, A.: Analysis of systematic scan Metropolis algorithms using Iwahori-Hecke algebra techniques. Mich. Math. J. 48, 157–190 (2000)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Elliott, D., Rao, K.: Fast Transforms: Algorithms, Analyses, Applications. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1982)zbMATHGoogle Scholar
  16. 16.
    Flath, D., Halverson, T., Herbig, K.: The planar rook algebra and Pascal’s triangle. Enseign. Math. (2) 55(1–2), 77–92 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Goodman, F.M., Wenzl, H.: The Temperley-Lieb algebra at roots of unity. Pac. J. Math. 161(2), 307–334 (1993)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Goodman, F., Hauschild, H.: Affine Birman-Wenzl-Murakami algebras and tangles in the solid torus. Fund. Math. 190, 77–137 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Goodman, F., de la Harpe, P., Jones, V.: Coxeter Graphs and Towers of Algebras. Mathematical Sciences Research Institute Publications, vol. 14. Springer, New York (1989)CrossRefGoogle Scholar
  20. 20.
    Grood, C.: The rook partition algebra. J. Comb. Theory A 113(2), 325–351 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Halverson, T., Ram, A.: Characters of algebras containing a Jones basic construction: the Temperley-Lieb, Okada, Brauer, and Birman-Wenzl algebras. Adv. Math. 116(2), 263–321 (1995)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Halverson, T., del Mas, E.: Representations of the Rook-Brauer algebra. Commun. Algebra 42(1), 423–443 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kassel, C., Turaev, V.: Braid Groups. Graduate Texts in Mathematics, vol. 247. Springer, New York (2008). With the graphical assistance of Olivier DodaneCrossRefGoogle Scholar
  24. 24.
    Kondor, R.: Non-commutative harmonic analysis in multi-object tracking. In: Barber, D., Taylan Cemgil, A., Silvia, C. (eds.) Bayesian Time Series Models, pp. 277–284. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  25. 25.
    Lafferty, J.D., Rockmore, D.: Fast fourier analysis for \({{\rm SL}}_2\) over a finite field and related numerical experiments. Exp. Math. 1(2), 115–139 (1992)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Leduc, R., Ram, A.: A ribbon Hopf algebra approach to the irreducible representations of centralizer algebras: the Brauer, Birman-Wenzl, and type A Iwahori-Hecke algebras. Adv. Math. 125, 1–94 (1997)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Malandro, M.E.: Fast Fourier transforms for finite inverse semigroups. J. Algebra 324(2), 282–312 (2010)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Malandro, M.E.: Inverse semigroup spectral analysis for partially ranked data. Appl. Comput. Harmon. Anal. 35(1), 16–38 (2013)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Malandro, M.E., Fast, R.D.N.: Fourier transforms for the rook monoid. Trans. Am. Math. Soc. 362(2), 1009–1045 (2010)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Maslen, D.: The efficient computation of Fourier transforms on the symmetric group. Math. Comput. 67(223), 1121–1147 (1998)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Maslen , D., Rockmore, D.: Generalized FFTs—a survey of some recent results. In: Groups and Computation, II (New Brunswick, NJ, 1995). DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, vol. 28, pp. 183–237. American Mathematical Society, Providence (1997)Google Scholar
  32. 32.
    Maslen, D., Rockmore, D.: Separation of variables and the computation of Fourier transforms on finite groups. I. J. Am. Math. Soc. 10(1), 169–214 (1997)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Maslen, D., Rockmore, D.: Double coset decompositions and computational harmonic analysis on groups. J. Fourier Anal. Appl. 6(4), 349–388 (2000)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Maslen, D., Rockmore, D.: The Cooley-Tukey FFT and group theory. Not. Am. Math. Soc. 48(10), 1151–1160 (2001)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Maslen, D., Rockmore, D., Wolff, S.: Separation of variables and the computation of Fourier transforms on finite groups. II. J. Fourier Anal. Appl. (2016). doi: 10.1007/s00041-016-9516-4 MathSciNetCrossRefGoogle Scholar
  36. 36.
    Morton, H., Wasserman, A.: A Basis for the Birman-Wenzl Algebra, p. 29, revised 2000, unpublished manuscript. arXiv:1012.3116 (1989)
  37. 37.
    Munthe-Kaas, H.Z.: On group Fourier analysis and symmetry preserving discretizations of PDEs. J. Phys. A 39(19), 5563–5584 (2006)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Murakami, J.: The Kauffman polynomial of links and representation theory. Osaka J. Math. 24(4), 745–758 (1987)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Ram, A.: Representation Theory and Character Theory of Centralizer Algebras. ProQuest LLC, Ann Arbor (1991). PhD thesis, University of California, San DiegoGoogle Scholar
  40. 40.
    Ram, A.: Seminormal representations of Weyl groups and Iwahori-Hecke algebras. Proc. Lond. Math. Soc. (3) 75(1), 99–133 (1997)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Ridout, D., Saint-Aubin, Y.: Standard modules, induction and the structure of the Temperley-Lieb algebra. Adv. Theor. Math. Phys. 18(5), 957–1041 (2014)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Rockmore, D.: Fast Fourier analysis for Abelian group extensions. Adv. Appl. Math. 11(2), 164–204 (1990)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Rockmore, D.: Some applications of generalized FFTs. In: Groups and Computation, II (New Brunswick, NJ, 1995). DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 28, pp. 329–369. American Mathematical Society, Providence (1997)Google Scholar
  44. 44.
    Rockmore, D.: The FFT: an algorithm the whole family can use. Comput. Sci. Eng. 2(1), 60–64 (2000)CrossRefGoogle Scholar
  45. 45.
    Rotman, J.J.: Advanced Modern Algebra. Prentice Hall Inc., Upper Saddle River (2002)zbMATHGoogle Scholar
  46. 46.
    Rui, H.: A criterion on the semisimple Brauer algebras. J. Comb. Theory A 111(1), 78–88 (2005)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Wenzl, H.: On the structure of Brauer’s centralizer algebras. Ann. Math. (2) 128(1), 173–193 (1988)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Wolff, S.: Random walks on the BMW monoid: an algebraic approach (in preparation)Google Scholar
  49. 49.
    Wood, J.: Some applications of the Fourier transform in algebraic coding theory. In: Algebra for Secure and Reliable Communication Modeling. Contemporary Mathematics, vol. 642, pp. 1–40. American Mathematical Society, Providence (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • David Maslen
    • 1
  • Daniel N. Rockmore
    • 2
  • Sarah Wolff
    • 3
    Email author
  1. 1.HBK Capital ManagementNew YorkUSA
  2. 2.Department of Mathematics and Computer ScienceDartmouth CollegeHanoverUSA
  3. 3.Department of Mathematics and Computer ScienceDenison UniversityGranvilleUSA

Personalised recommendations