Skip to main content
Log in

A Characterization of Sparse Nonstationary Gabor Expansions

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We investigate the problem of constructing sparse time–frequency representations with flexible frequency resolution, studying the theory of nonstationary Gabor frames (NSGFs) in the framework of decomposition spaces. Given a painless NSGF, we construct a compatible decomposition space and prove that the NSGF forms a Banach frame for the decomposition space. Furthermore, we show that the decomposition space norm can be completely characterized by a sparseness condition on the frame coefficients and we prove an upper bound on the approximation error occurring when thresholding the frame coefficients for signals belonging to the decomposition space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Balazs, P., Dörfler, M., Jaillet, F., Holighaus, N., Velasco, G.: Theory, implementation and applications of nonstationary Gabor frames. J. Comput. Appl. Math. 236(6), 1481–1496 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borup, L., Nielsen, M.: Banach frames for multivariate \(\alpha \)-modulation spaces. J. Math. Anal. Appl. 321(2), 880–895 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borup, L., Nielsen, M.: Frame decomposition of decomposition spaces. J. Fourier Anal. Appl. 13(1), 39–70 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borup, L., Nielsen, M.: On anisotropic Triebel–Lizorkin type spaces, with applications to the study of pseudo-differential operators. J. Funct. Spaces Appl. 6(2), 107–154 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Casazza, P., Han, D., Larson, D.: Frames for Banach spaces. Contemp. Math. 247, 149–182 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Christensen, O.: An introduction to frames and Riesz bases. In: Applied and Numerical Harmonic Analysis, 2nd edn. Birkhäuser Boston, Inc., Boston (2016)

  7. Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27(5), 1271–1283 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. DeVore, R.A., Lorentz, G.G.: Constructive approximation. In: Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 303. Springer, Berlin (1993)

  9. Dörfler, M.: Time–frequency analysis for music signals: a mathematical approach. J. N. Music Res. 30(1), 3–12 (2001)

    Article  Google Scholar 

  10. Dörfler, M.: Quilted Gabor frames—a new concept for adaptive time–frequency representation. Adv. Appl. Math. 47(4), 668–687 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dörfler, M., Matusiak, E.: Nonstationary Gabor frames—existence and construction. Int. J. Wavelets Multiresolut. Inf. Process. 12(3), 1450032, 18 (2014)

  12. Dörfler, M., Matusiak, E.: Nonstationary Gabor frames—approximately dual frames and reconstruction errors. Adv. Comput. Math. 41(2), 293–316 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dörfler, M., Godsill, S., Wolfe, P.: Multi-Gabor dictionaries for audio time–frequency analysis. In: Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp.s 43–46. Mohonk, NY. NuHAG-Coop. (2001)

  14. Dörfler, M., Holighaus, N., Grill, T., Velasco, G.A.: Constructing an invertible constant-Q transform with nonstationary Gabor frames. In: Proceedings of the 14th International Conference on Digital Audio Effects (DAFx 11), Paris, France, 2011

  15. Feichtinger, H.G.: Banach convolution algebras of Wiener type. In: Functions, Series, Operators, Vol. I, II (Budapest, 1980). Colloquium of Mathematical Society of János Bolyai, vol. 35, pp. 509–524. North-Holland, Amsterdam (1983)

  16. Feichtinger, H.G.: Banach spaces of distributions defined by decomposition methods. II. Math. Nachr. 132, 207–237 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feichtinger, H.G.: Modulation spaces of locally compact abelian groups. In: Radha, R., Krishna, M., Thangavelu, S. (eds.) Proceedings of International Conference on Wavelets and Applications, pp. 1–56. NuHAG, New Delhi Allied Publishers (2003)

  18. Feichtinger, H.G., Gröbner, P.: Banach spaces of distributions defined by decomposition methods. I. Math. Nachr. 123, 97–120 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Feichtinger, H.G., Gröchenig, K.H.: Banach spaces related to integrable group representations and their atomic decompositions. I. J. Funct. Anal. 86(2), 307–340 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feichtinger, H.G., Gröchenig, K.H.: Banach spaces related to integrable group representations and their atomic decompositions. II. Mon. Math. 108(2–3), 129–148 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34(4), 777–799 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. Führ, H., Voigtlaender, F.: Wavelet coorbit spaces viewed as decomposition spaces. J. Funct. Anal. 269(1), 80–154 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gribonval, R., Nielsen, M.: Some remarks on non-linear approximation with Schauder bases. East J. Approx. 7(3), 267–285 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Gribonval, R., Nielsen, M.: Nonlinear approximation with dictionaries. I. Direct estimates. J. Fourier Anal. Appl. 10(1), 51–71 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gribonval, R., Nielsen, M.: Nonlinear approximation with dictionaries. II. Inverse estimates. Constr. Approx. 24(2), 157–173 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gröbner, P.: Banachräume glatter Funktionen und Zerlegungsmethoden. ProQuest LLC, Ann Arbor, MI, 1992. Thesis (Dr.natw.)-Technische Universität Wien (Austria)

  27. Gröchenig, K.: Describing functions: atomic decompositions versus frames. Mon. Math. 112(1), 1–42 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gröchenig, K.: Foundations of time–frequency analysis. In: Applied and Numerical Harmonic Analysis. Birkhäuser Boston, Inc., Boston (2001)

  29. Gröchenig, K., Samarah, S.: Nonlinear approximation with local Fourier bases. Constr. Approx. 16(3), 317–331 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Heil, C.: An introduction to weighted Wiener amalgams. In: Wavelets and Their Applications (Chennai, January 2002), pp. 183–216. Allied Publishers, New Delhi (2003)

  31. Hernández, E., Labate, D., Weiss, G.: A unified characterization of reproducing systems generated by a finite family. II. J. Geom. Anal. 12(4), 615–662 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Holighaus, N.: Structure of nonstationary Gabor frames and their dual systems. Appl. Comput. Harmon. Anal. 37(3), 442–463 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Holighaus, N., Dörfler, M., Velasco, G., Grill, T.: A framework for invertible, real-time constant-Q transforms. IEEE Trans. Audio Speech Lang. Process. 21(4), 775–785 (2013)

    Article  Google Scholar 

  34. Holzapfel, A., Velasco, G.A., Holighaus, N., Dörfler, M., Flexer, A.: Advantages of nonstationary Gabor transforms in beat tracking. In: Proceedings of the 1st International ACM Workshop on Music Information Retrieval with User-Centered and Multimodal Strategies, MIRUM ’11, New York, NY, USA, pp. 45–50. ACM (2011)

  35. Jaillet, F., Torrésani, B.: Time–frequency jigsaw puzzle: adaptive multiwindow and multilayered Gabor expansions. Int. J. Wavelets Multiresolut. Inf. Process. 5(2), 293–315 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jakobsen, M.S., Lemvig, J.: Reproducing formulas for generalized translation invariant systems on locally compact abelian groups. Trans. Am. Math. Soc. 368(12), 8447–8480 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kutyniok, G., Labate, D.: The theory of reproducing systems on locally compact abelian groups. Colloq. Math. 106(2), 197–220 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nielsen, M., Rasmussen, K.N.: Compactly supported frames for decomposition spaces. J. Fourier Anal. Appl. 18(1), 87–117 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pielemeier, W., Wakefield, G., Simoni, M.: Time–frequency analysis of musical signals. Proc. IEEE 84(9), 1216–1230 (1996)

    Article  Google Scholar 

  40. Rauhut, H.: Wiener amalgam spaces with respect to quasi-Banach spaces. Colloq. Math. 109(2), 345–362 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ron, A., Shen, Z.: Generalized shift-invariant systems. Constr. Approx. 22(1), 1–45 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Triebel, H.: Theory of function spaces. In: Mathematik und ihre Anwendungen in Physik und Technik (Mathematics and Its Applications in Physics and Technology), vol. 38. Akademische Verlagsgesellschaft Geest and Portig K.-G., Leipzig (1983)

  43. Zibulski, M., Zeevi, Y.Y.: Analysis of multiwindow Gabor-type schemes by frame methods. Appl. Comput. Harmon. Anal. 4(2), 188–221 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous reviewers for their constructive comments on the original manuscript. Their valuable suggestions have helped improve the manuscript considerably. Supported by the Danish Council for Independent Research | Natural Sciences, Grant 12-124675, “Mathematical and Statistical Analysis of Spatial Data”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Solsbæk Ottosen.

Additional information

Communicated by Thomas Strohmer.

Appendix: Proof of Theorem 2.1

Appendix: Proof of Theorem 2.1

Proof

To simplify notation we let \(D^s_{p,q}:=D(\mathcal {Q},\,L^p,\,\ell ^q_{\omega ^s}).\) Let us first prove Theorem 2.1(1). Allowing the extension \(q=\infty ,\) and repeating the arguments from the proof of [4, Proposition 5.7], we can show that

$$\begin{aligned} D^{s+\varepsilon }_{p,\infty }\hookrightarrow D^s_{p,q}\hookrightarrow D^s_{p,\infty },\quad \varepsilon >d/q, \end{aligned}$$

for any \(s\in \mathbb {R}\) and \(0<p<\infty \) using Definition 2.2(4). It therefore suffice to show that \(\mathcal {S}(\mathbb {R}^d)\hookrightarrow D^s_{p,\infty } \hookrightarrow \mathcal {S}^{\prime }(\mathbb {R}^d)\) for any \(s\in \mathbb {R}\) and \(0<p<\infty .\) For \(N\in \mathbb {N},\) we define semi-norms on \(\mathcal {S}(\mathbb {R}^d)\) by

$$\begin{aligned} p_N(g):=\sup _{\xi \in \mathbb {R}^d}\left\{ u(\xi )^N\sum _{\left| {\beta }\right| \le N}\left| {\partial ^\beta \hat{g}(\xi )}\right| \right\} ,\quad g\in \mathcal {S}\left( \mathbb {R}^d\right) , \end{aligned}$$

with \(u(\xi )=1+\Vert \xi \Vert _2\) as usual. Following the approach in [4, p. 149], and applying Proposition 2.1(4), we get

$$\begin{aligned} \left\| {f}\right\| _{D^s_{p,\infty }}\le Cp_N(f)\quad \text {and}\quad \left\| {f}\right\| _{D^s_{1,1}}\le C^{\prime }p_{N^{\prime }}(f), \end{aligned}$$

for sufficiently large N and \(N^{\prime }.\) This proves that \(\mathcal {S}(\mathbb {R}^d)\hookrightarrow D^s_{p,\infty }\) and \(\mathcal {S}(\mathbb {R}^d)\hookrightarrow D^s_{1,1}.\) To show that \(D^s_{p,\infty } \hookrightarrow \mathcal {S}^{\prime }(\mathbb {R}^d)\) we need to take a different approach than in [4]. Setting \(\widetilde{\psi }_T:=\sum _{T^{\prime }\in \widetilde{T}}\psi _{T^{\prime }},\) we first note that for \(f\in D^s_{p,\infty }\) and \(\varphi \in \mathcal {S}(\mathbb {R}^d),\)

$$\begin{aligned} \left| {\left\langle {f,\,\varphi }\right\rangle }\right| \le \sum _{T\in \mathcal {T}}\left\| {\psi _T(D)f\widetilde{\psi }_T(D)\varphi }\right\| _{L^1}\le \sum _{T\in \mathcal {T}}\left\| {\psi _T(D)f}\right\| _{L^\infty }\left\| {\widetilde{\psi }_T(D)\varphi }\right\| _{L^1}. \end{aligned}$$

Using Lemma 8.1 below (with \(g=\mathcal {F}^{-1}\{\psi _T\hat{f}(T\xi )\}\)) we thus get

$$\begin{aligned} \left| {\left\langle {f,\,\varphi }\right\rangle }\right|\le & {} C_1 \sum _{T\in \mathcal {T}}\left| {T}\right| ^{1/p}\left\| {\psi _T(D)f}\right\| _{L^p}\left\| {\widetilde{\psi }_T(D)\varphi }\right\| _{L^1} \nonumber \\\le & {} C_1\left\| {f}\right\| _{D^s_{p,\infty }}\sum _{T\in \mathcal {T}}\left| {T}\right| ^{1/p}\omega _T^{-s}\left\| {\widetilde{\psi }_T(D)\varphi }\right\| _{L^1}\nonumber \\\le & {} C_2\left\| {f}\right\| _{D^s_{p,\infty }}\left\| {\left\{ \left\| {\widetilde{\psi }_T(D)\varphi }\right\| _{L^1}\right\} _{T\in \mathcal {T}}}\right\| _{\ell ^1_{\omega ^{\gamma /p-s}}}, \end{aligned}$$
(7.3)

since \(|T|=|Q|^{-1}|Q_T|\le |Q|^{-1}\omega _T^\gamma \) according to Definition 2.2(5). Applying (2.2) we may continue on (7.3) and write

$$\begin{aligned} \left| {\left\langle {f,\,\varphi }\right\rangle }\right| \le C_3\left\| {f}\right\| _{D^s_{p,\infty }}\left\| {\varphi }\right\| _{D^{\gamma /p-s}_{1,1}}\le C_4\left\| {f}\right\| _{D^s_{p,\infty }}p_N(\varphi ), \end{aligned}$$

for sufficiently large N since \(\mathcal {S}(\mathbb {R}^d)\hookrightarrow D^s_{1,1}.\) We conclude that \(D^s_{p,\infty }\hookrightarrow \mathcal {S}^{\prime }(\mathbb {R}^d)\) which proves Theorem 2.1(1).

The proof of Theorem  2.1(2) follows directly from Theorem  2.1(1) and the arguments in [4, p. 150].

To prove Theorem  2.1(3) we let \(f\in D^s_{p,q}\) and choose \(I\in C^\infty _c(\mathbb {R}^d)\) with \(0\le I(\xi )\le 1\) and \(I(\xi )\equiv 1\) in a neighbourhood of \(\xi =0.\) Also, we define \((\widetilde{f})^{\widehat{}}:=I\hat{f}\) and

$$\begin{aligned} \widetilde{f}_\varepsilon :=\mathcal {F}^{-1}\left\{ \varphi _\varepsilon \,*\, (\widetilde{f})^{\widehat{}}\right\} \in \mathcal {S}\left( \mathbb {R}^d\right) , \end{aligned}$$

with \(\varphi _\varepsilon (\xi ):=\varepsilon ^{-d}\varphi (\xi /\varepsilon )\) and \(\varphi \) being a compactly supported mollifier. Since \({{\mathrm{supp}}}(I)\) is compact, we may choose a finite subset \(T^*\subset \mathcal {T},\) such that \({{\mathrm{supp}}}(I)\subset \cup _{T\in T^*}Q_T\) and \(\sum _{T\in T^*}\psi _T(\xi )\equiv 1\) on \({{\mathrm{supp}}}(I).\) Using Lemma 8.2 below we obtain

$$\begin{aligned} \Vert \widetilde{f}\Vert _{L^p}= & {} \left\| {\mathcal {F}^{-1}I\mathcal {F}\left( \mathcal {F}^{-1}\left( \sum _{T\in T^*}\psi _T\cdot \hat{f}\right) \right) }\right\| _{L^p}\\\le & {} C\sum _{T\in T^*}\left\| {\mathcal {F}^{-1}I}\right\| _{L^{\tilde{p}}}\left\| {\psi _T(D)f}\right\| _{L^p}<\infty , \end{aligned}$$

with \(\tilde{p}=\min \{1,\,p\}.\) The dominated convergence theorem thus yields

$$\begin{aligned} \left\| {\widetilde{f}-\widetilde{f}_\varepsilon }\right\| _{D^s_{p,q}}\le C\left\| {\left\{ \left\| {\widetilde{f}-\widetilde{f}_\varepsilon }\right\| _{L^p}\right\} _{T\in \mathcal {T}}}\right\| _{\ell ^q_{\omega ^s}}\rightarrow 0,\quad \text {as}\,\varepsilon \rightarrow 0, \end{aligned}$$

so the proof is done if we can show that \(\Vert f-\widetilde{f}\Vert _{D^s_{p,q}}\) can be made arbitrary small by choosing \(\widetilde{f}\) appropriately. To show this, we define the set \(T_{\circ }:=\{T\in \mathcal {T}~|~I(\xi )\equiv 1 \text { on}\,{{\mathrm{supp}}}(\psi _T)\}.\) Denoting the complement \(T_{\circ }^c,\) Lemma  8.2 below yields

$$\begin{aligned} \left\| {f-\widetilde{f}}\right\| _{D^s_{p,q}}^q= & {} \sum _{T\in T_{\circ }^c}\omega _T^{sq}\left\| {\mathcal {F}^{-1}\left( \psi _T(\hat{f}-I\hat{f})\right) }\right\| _{L^p}^q\\\le & {} C_1\sum _{T\in T_{\circ }^c}\omega _T^{sq}\left( \left\| {\psi _T(D)f}\right\| _{L^p}+\left\| {\mathcal {F}^{-1}I\mathcal {F}\left( \psi _T(D)f\right) }\right\| _{L^p}\right) ^q\\\le & {} C_2\sum _{T\in T_{\circ }^c}\omega _T^{sq}\left\| {\psi _T(D)f}\right\| _{L^p}^q. \end{aligned}$$

Finally, since \(f\in D^s_{p,q}\) we can choose \({{\mathrm{supp}}}(I)\) large enough, such that \(\Vert f-\widetilde{f}\Vert _{D^s_{p,q}}<\varepsilon ,\) for any given \(\varepsilon >0.\) This proves Theorem  2.1(3). \(\square \)

In the proof of Theorem 2.1 we used the following two lemmas. A proof of Lemma 8.1 can be found in [3, Lemma 3] and a proof of Lemma  8.2 can be found in [42, Proposition 1.5.1].

Lemma 8.1

Let \(g\in L^p(\mathbb {R}^d)\) and \({{\mathrm{supp}}}(\hat{g})\subset \Gamma ,\) with \(\Gamma \subset \mathbb {R}^d\) compact. Given an invertible affine transformation T,  let \(\hat{g}_T(\xi ):=\hat{g}(T^{-1}\xi ).\) Then for \(0<p\le q\le \infty ,\)

$$\begin{aligned} \left\| {g_T}\right\| _{L_q}\le C\left| {T}\right| ^{1/p-1/q}\left\| {g_T}\right\| _{L_p}, \end{aligned}$$

for a constant C independent of T.

Lemma 8.2

Let \(\Omega \) and \(\Gamma \) be compact subsets of \(\mathbb {R}^d.\) Let \(0<p\le \infty \) and \(\tilde{p}=\min \{1,\,p\}.\) Then there exists a constant C such that

$$\begin{aligned} \left\| {\mathcal {F}^{-1}M\mathcal {F}f}\right\| _{L^p}\le C \left\| {\mathcal {F}^{-1}M}\right\| _{L^{\tilde{p}}}\left\| {f}\right\| _{L^p}, \end{aligned}$$

for all \(f\in L^p(\mathbb {R}^d)\) with \({{\mathrm{supp}}}(\hat{f})\subset \Omega \) and all \(\mathcal {F}^{-1}M\in L^{\tilde{p}}(\mathbb {R}^d)\) with \({{\mathrm{supp}}}(M)\subset \Gamma .\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ottosen, E.S., Nielsen, M. A Characterization of Sparse Nonstationary Gabor Expansions. J Fourier Anal Appl 24, 1048–1071 (2018). https://doi.org/10.1007/s00041-017-9546-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-017-9546-6

Keywords

Mathematics Subject Classification

Navigation