A Counterexample to the “Hot Spots” Conjecture on Nested Fractals

Abstract

Although the “hot spots” conjecture was proved to be false on some classical domains, the problem still generates a lot of interests on identifying the domains that the conjecture hold. The question can also be asked on fractal sets that admit Laplacians. It is known that the conjecture holds on the Sierpinski gasket and its variants. In this note, we show surprisingly that the “hot spots” conjecture fails on the hexagasket, a typical nested fractal set. The technique we use is the spectral decimation method of eigenvalues of Laplacian on fractals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Atar, R., Burdzy, K.: On Neumann eigenfunctions in lip domains. J. Am. Math. Soc. 17, 243–265 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Bajorin, N., Chen, T., Dagan, A., Emmons, C., Hussein, M., Khalil, M., Mody, P., Steinhurst, B., Teplyaev, A.: Vibration nodes of \(3n\)-gaskets and other fractals. J. Phys. A 41, 015101 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Bañuelos, R., Burdzy, K.: On the “hot spots” conjecture of J. Rauch. J. Funct. Anal. 164, 1–33 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Burdzy, K.: The hot spots problem in planar domains with one hole. Duke Math. J. 129, 481–502 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Burdzy, K.: Brownian Motion and its Applications to Mathematical Analysis, Lecture Notes in Math, vol. 2106. Springer, New York (2014)

    Google Scholar 

  6. 6.

    Burdzy, K., Werner, W.: A counterexample to the “hot spots” conjecture. Ann. Math. 149, 309–317 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Drenning, S., Strichartz, R.S.: Spectral decimation on hambly’s homogeneous hierarchical gaskets. Ill. J. Math. 53, 915–937 (2009)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Fukushima, M., Shima, T.: On a spectral analysis for the Sierpinski gasket. Potential Anal. 1, 1–35 (1992)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Ionescu, M., Pearse, E.P.J., Rogers, L.G., Ruan, H.-J., Strichartz, R.S.: The resolvent kernel for p.c.f. self-similar fractals. Trans. Am. Math. Soc. 362, 4451–4479 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Jerison, D., Nadirashvili, N.: The “hot spots” conjecture for domains with two axes of symmetry. J. Am. Math. Soc. 13, 741–772 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Kawohl, B.: Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Math, vol. 1150. Springer, Berlin (1985)

    Google Scholar 

  12. 12.

    Kigami, J.: A harmonic calculus on the Sierpinski spaces. Jpn. J. Appl. Math. 6, 259–290 (1989)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Kigami, J.: Harmonic calculus on p.c.f. self-similar sets. Trans. Am. Math. Soc. 335, 721–755 (1993)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Kigami, J.: Analysis on Fractals. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  15. 15.

    Li, X.-H., Ruan, H.-J.: The “hot spots” conjecture on higher dimensional Sierpinski gaskets. Commun. Pure. Appl. Anal. 15, 287–297 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Lindstrøm, T.: Brownian motion on nested fractals. Mem. Am. Math. Soc. 420, 1–128 (1990)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Rammal, R.: Spectrum of harmonic excitations on fractals. J. Phys. 45, 191–206 (1984)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Rammal, R., Toulouse, G.: Random walks on fractal structrues and percolation clustars. J. Phys. Lett. 44, L13–L22 (1982)

    Article  Google Scholar 

  19. 19.

    Ruan, H.-J.: The “hot spots” conjecture for the Sierpinski gasket. Nonlinear Anal. 75, 469–476 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Ruan, H.-J., Zheng, Y.-W.: The “hot spots” conjecture on the level-3 Sierpinski gasket. Nonlinear Anal. 81, 101–109 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Shima, T.: On eigenvalue problems for the random walks on the Sierpinski pre-gaskets. Jpn. J. Ind. Appl. Math. 8, 127–141 (1991)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Shima, T.: On eigenvalue problems for Laplacians on p.c.f. self-similar sets. Jpn. J. Ind. Appl. Math. 13, 1–23 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Strichartz, R.S.: Differential Equations on Fractals. Princeton University Press, Princeton (2006)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Professors Qi-Rong Deng and Robert Strichartz for their valuable discussions and suggestions. We are also grateful to the referees for their helpful comments. The research of Lau is supported in part by the HKRGC Grant and the NSFC Grant 11371382. The research of Ruan is supported in part by the NSFC Grant 11271327, and by ZJNSFC Grant LR14A010001.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiao-Hui Li.

Additional information

Communicated by Robert S. Strichartz.

Appendix: Laplacian and Normal Derivative on Hexagasket

Appendix: Laplacian and Normal Derivative on Hexagasket

In this appendix, we derive the definition of Laplacian and normal derivative of the hexagasket, in Definitions 2.1, 2.2, following the general method in [14].

For any finite set U and V, we let \(\ell (U)=\{f:\; f \text{ maps } U \text{ into } \mathbb {R} \}\), denote

$$\begin{aligned} L(U,V)=\{A:\; A \text{ is } \text{ a } \text{ linear } \text{ map } \text{ from } \ell (U) \text{ to } \ell (V)\}, \end{aligned}$$

and \(L(U)=L(U,U)\). It is clear that for each \(A\in L(U,V)\), there exists a unique matrix, denoted by \(\{A_{pq}\}_{p\in V,q\in U}\), such that for any \(f\in \ell (U)\),

$$\begin{aligned} (Af)(p)=\sum _{q\in U} A_{pq} f(q), \quad \forall \ p\in V. \end{aligned}$$

We will use the same notation for both linear map and the corresponding matrix. We define \(\mathcal {H}(V)\) to be the collection of symmetric and irreducible matrix D in L(V) satisfying following two conditions: (i) \(D_{pp}<0\) and \(\sum _{q\in V} D_{pq}=0\) for all \(p\in V\); (ii) \(D_{pq}\ge 0\) if \(p\not =q\).

Let K be a connected p.c.f. self-similar set with contractive maps \(\{F_i\}_{i=1}^{N}\) on \({\mathbb {R}}^d\), and let \(V_0\) be the boundary of K. Given \(D\in \mathcal {H}(V_0)\) and \(\mathbf {r}=(r_1, r_2, \ldots , r_N)\), where \( r_i>0\) for all i, we define \(H_m\) for any \(m>0\) by

$$\begin{aligned} H_m=\sum _{|\omega |=m}r_\omega ^{-1}R^t_{\omega }DR_\omega , \end{aligned}$$

where \(R_\omega \in L(V_m,V_0)\) is defined by \(R_\omega f=f\circ F_\omega \), and \(r_\omega =r_{\omega _1},\ldots , r_{\omega _m}\) for \(\omega =(\omega _1,\ldots ,\omega _m) \in \Sigma ^m.\) Decompose \(H_1\) into

$$\begin{aligned} H_1= \left[ \begin{array}{ccc} T &{} J^{t} \\ J &{} X \\ \end{array} \right] , \end{aligned}$$

where \(T\in L(V_0), J\in L(V_0, V_1{\setminus } V_0)\) and \(X \in L(V_1{\setminus } V_0)\). As Sect. 3.1 in [14], we call \((D,\mathbf {r})\) a harmonic structure if

$$\begin{aligned} T-J^t X^{-1}J=D. \end{aligned}$$

Given a continuous function u on K. We call u harmonic if \((H_mu)|_{V_m{\setminus } V_0}=0\) for all \(m\ge 1\), and call u a piecewise harmonic spline of level m if \(u\circ F_\omega \) is harmonic for all \(\omega \in \Sigma ^m.\)

Let \(\mu \) be the standard self-similar measure on K [i.e., \(\mu (K)=1\) and \(\mu (\cdot )=\sum _{i=1}^N \frac{1}{N}\mu (F_i^{-1}(\cdot ))\)], the following definitions of Laplacian and normal derivative are given in Sect. 6 in [13].

Definition 4.5

Assume that \((D,\mathbf {r})\) is a harmonic structure on K. For u a continuous function on K, we write \(\Delta u=f\) if there exists a continuous function f on K such that

$$\begin{aligned} \lim _{m\rightarrow \infty }\max _{x\in V_m \backslash V_0}\left| \left( \int _{K} \psi _x^{(m)} \, d\mu \right) ^{-1}(H_mu)(x)-f(x)\right| =0, \end{aligned}$$

where \(\psi _x^{(m)}\) is the piecewise harmonic spline of level m satisfying \(\psi _x^{(m)}(y)=\delta _{xy}\) for all \(y\in V_m\).

Definition 4.6

Assume that \((D,\mathbf {r})\) is a harmonic structure on K. Given a continuous function u on K. For \(q\in V_0 \), we define the Neumann derivative of u at q to be (if the limit exists)

$$\begin{aligned} \partial _n u(q) = -\lim _{m\rightarrow \infty } (H_mu)(q). \end{aligned}$$

Now for the hexagasket, let

$$\begin{aligned} D= \left( \begin{array}{ccc} -2 &{} 1 &{}1 \\ 1 &{} -2 &{}1 \\ 1&{}1&{}-2 \end{array} \right) , \quad \mathbf {r}=\left( r,r,r,r,r,r\right) , \end{aligned}$$

where \(r>0\). It is easy to check that \((D,\mathbf {r})\) is a harmonic structure if and only if \(r=\frac{3}{7}\). Thus, throughout the paper, we always choose \(r=\frac{3}{7}\) so that

$$\begin{aligned} (H_m)u(x)=\Big (\frac{7}{3}\Big )^m\sum _{y\sim _mx}(u(y)-u(x)). \end{aligned}$$

Let \(\mu \) be the standard self-similar measure on the hexagasket. Similar to Sect. 2.2 in [23], we obtain that \(\int _{K} \psi _x^{(m)} \, \mathrm{d}\mu = {\deg _m(x)}/{6^{m+1}}\). As by definition, \(\Delta _mu(x)=\frac{1}{\deg _m(x)}\sum _{y\sim _mx}(u(y)-u(x))\) for \(x\in V_m{\setminus } V_0\), we have for \( x\in V_*{\setminus } V_0,\)

$$\begin{aligned} \Delta u(x) = \lim _{m\rightarrow \infty }\left( \frac{7}{3}\right) ^m \left( \int _{K} \psi _x^{(m)} \, \mathrm{d}\mu \right) ^{-1} \sum _{y\sim _mx}(u(y)-u(x)) =6 \lim _{m\rightarrow \infty }14^m \Delta _mu(x), \end{aligned}$$

and for \(q_i \in V_0\),

$$\begin{aligned} \partial _nu(q_i)=\lim _{m\rightarrow \infty }\left( \frac{7}{3}\right) ^m\sum _{y\sim _m q_i}(u(q_i)-u(y)). \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lau, KS., Li, XH. & Ruan, HJ. A Counterexample to the “Hot Spots” Conjecture on Nested Fractals. J Fourier Anal Appl 24, 210–225 (2018). https://doi.org/10.1007/s00041-017-9524-z

Download citation

Keywords

  • Eigenvalues
  • Neumann Laplacian
  • Hot spots
  • Nested fractal
  • Hexagasket
  • Spectral decimation

Mathematics Subject Classification

  • Primary 28A80
  • 47A75
  • Secondary 39A70
  • 47B39