Skip to main content
Log in

A Geometric Characterization of a Class of Poisson Type Distributions

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Tempered distributions on \(\mathbb {R}^{n}\) which have Dirac comb structure are characterized in terms of sparseness properties of its support and spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Córdoba, A.: Dirac combs. Lett. Math. Phys. 17, 191–196 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Favorov, S.Yu.: Fourier quasicrystals and Lagarias’ conjecture. Proc. Am. Math. Soc. 144, 3527–3536 (2016)

  3. Hof, A.: On diffraction by aperiodic structures. Commun. Math. Phys. 169, 25–43 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. International Union of Crystallography, Report of the Executive Committee for 1991, Acta Crystallogr. A 48(6), 922–946 (1992)

  5. Kolountzakis, M.N., Lagarias, J.C.: Structure of tilings of the line by a function. Duke Math. J. 82, 653–678 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lev, N., Olevskii, A.: Measures with uniformly discrete support and spectrum. C. R. Acad. Sci. Ser. I(351), 599–603 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lev, N., Olevskii, A.: Quasicrystals and Poisson’s summation formula. Invent. Math. 200, 585–606 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lev, N., Olevskii, A.: Fourier quasicrystals and discreteness of the diffraction spectrum. arXiv:1512.08735v1 [math.CA] (29 Dec 2015)

  9. Meyer, Y.: Lecture Notes in Mathematics. Nombres de Pisot, nombres de Salem et analyse harmonique. Springer, New York (1970)

    Google Scholar 

  10. Meyer, Y.: Quasicrystals, diophantine approximation and algebraic numbers. Beyond quasicrystals (Les Houches, 1994), pp. 3–16. Springer, Berlin (1995)

    Chapter  Google Scholar 

  11. Moody, R. V.: Meyer sets and their duals. The mathematics of long-range aperiodic order, in NATO Advanced Science Institute Series C: Mathematical and Physical Sciences, vol. 489 (Kluwer Academic Publishers, Dordrecht, 1997), pp. 403–441

  12. Schwartz, L.: Théorie des distributions. Hermann, Paris (1950/51)

  13. Shechtman, D., Blech, I., Gratias, D., Cahn, J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984)

    Article  Google Scholar 

  14. Wiener, N.: Generalized harmonic analysis. Acta Math. 55, 117–258 (1930)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Palamodov.

Additional information

Communicated by Hans G. Feichtinger.

Appendix

Appendix

Proof

of Proposition 4. For any \(\psi \in \mathrm {S}\left( E^{*}\right) ,\)

$$\begin{aligned} F\left( u*_{e}v^{*}\right) \left( \psi \right)&=\left[ u*_{e}v^{*}\right] \left( \hat{\psi }\right) =\left[ u\times v^{*}\right] \left( e\left( x-y\right) \hat{\psi }\left( \frac{x+y}{2}\right) \right) \\&=F\left( u\times v^{*}\right) \left( F^{-1}\left( e\left( x-y\right) \hat{\psi }\left( \frac{x+y}{2}\right) \right) \right) ,\\&=F\left( u\times v^{*}\right) \left( \tilde{e}\left( \frac{\rho }{2}\right) \psi \left( \omega \right) \right) , \end{aligned}$$

since the coordinates \(\rho /2,\omega \) are dual to \(x-y,\left( x+y\right) /2\) where \(\rho =\xi -\eta ,\) \(\omega =\xi +\eta \ \) We have \(F\left( u\times v^{*}\right) =F\left( u\right) \times F\left( v^{*}\right) =\hat{u} \times \overline{\hat{v}}\) and finally

$$\begin{aligned} F\left( u*_{e}v^{*}\right) \left( \psi \right) =\left[ \hat{u} \times \overline{\hat{v}}\right] \left( \tilde{e}\left( \frac{\rho }{2}\right) \psi \left( \omega \right) \right) =\left[ \hat{u}*_{\tilde{e}}\overline{\hat{v}}\right] \left( \psi \right) \end{aligned}$$

which proves (7).

Suppose now that \(\hat{u}=\sum \hat{u}_{\sigma }\left( D\right) \delta _{\sigma },\ \hat{v}=\sum \hat{v}_{\sigma }\left( D\right) \delta _{\sigma }\) where the sums are taken over \(\Sigma \) and calculate

$$\begin{aligned} F\left( u*_{e}v^{*}\right) \left( \psi \right)&=\sum _{\sigma ,\tau \in \Sigma }\left[ \hat{u}_{\sigma }\left( D_{\xi }\right) \delta _{\sigma }\times \overline{\hat{v}}_{\tau }\left( -D_{\eta }\right) \delta _{\tau }\right] \left( \tilde{e}\left( \frac{\rho }{2}\right) \psi \left( \omega \right) \right) \nonumber \\&=\sum _{\sigma ,\tau }\left[ \delta _{\sigma }\times \delta _{\tau }\right] \hat{u}_{\sigma }\left( -D_{\xi }\right) \overline{\hat{v}}_{\tau }\left( D_{\eta }\right) \left( \tilde{e}\left( \frac{\rho }{2}\right) \psi \left( \omega \right) \right) , \end{aligned}$$
(15)

where

$$\begin{aligned} \ \delta _{\sigma }\left( \xi \right) \times \delta _{\tau }\left( \eta \right) =\delta _{\sigma -\tau }\left( \frac{\rho }{2}\right) \delta _{\sigma +\tau }\left( \omega \right) ,\ D_{\xi }=D_{\rho }+D_{\omega },\ D_{\eta }=D_{\omega }-D_{\rho }. \end{aligned}$$

The right hand side of (15) is equal to

$$\begin{aligned} \sum _{\sigma ,\tau }\left[ \delta _{\sigma -\tau }\left( \frac{\rho }{2}\right) \times \delta _{\sigma +\tau }\left( \omega \right) \right] \hat{u}_{\sigma }\left( -D_{\omega }-D_{\rho }\right) \overline{\hat{v}}_{\tau }\left( D_{\omega }-D_{\rho }\right) \left( \tilde{e}\left( \frac{\rho }{2}\right) \psi \left( \omega \right) \right) . \end{aligned}$$

The set \(\Sigma -\Sigma \) is discrete and for any \(\rho \in \Sigma -\Sigma ,\) the sum over the set \(\left\{ \left( \sigma ,\tau \right) ;\ \sigma -\tau =\rho \right\} \) converges to a distribution supported at \(\rho \), since by (4) \(\left\| \hat{u}_{\sigma }\overline{\hat{v}}_{\tau }\right\| =O\left( \left| \sigma \right| ^{q}\right) \) as \(\left| \sigma \right| \rightarrow \infty \) for some q whereas all the derivatives of \(\psi \) decrease fast as \(\left| \omega \right| =\left| \sigma +\tau \right| \rightarrow \infty .\ \)This implies the second statement. \(\square \)

Proof

of Theorem 3. We have

$$\begin{aligned} \left[ u*_{e_{i}}v\right] \left( \varphi \right)&=\left[ \sum _{p\in \Lambda }u_{p}\left( D_{x}\right) \delta _{p}\left( x\right) \times \sum _{q\in \Lambda }v_{q}\left( -D_{y}\right) \delta _{-q}\left( y\right) \right] e_{i}\left( x-y\right) \varphi \left( \frac{x+y}{2}\right) \\&=\sum _{p\in \Lambda }\sum _{q\in \Lambda }u_{p}\left( D_{x}\right) v_{q}\left( -D_{y}\right) \delta _{p-q}\left( e_{i}\left( x-y\right) \varphi \left( \frac{x+y}{2}\right) \right) \left. {}\right| _{x=p,y=q}, \end{aligned}$$

where the terms with \(p-q\ne 0\) vanish since the support of e is too small. The right hand side equals

$$\begin{aligned} \sum _{p\in \Lambda }u_{p}\left( -D_{x}\right) v_{p}\left( D_{y}\right) \left( e_{i}\left( x-y\right) \varphi \left( \frac{x+y}{2}\right) \right) \left. {}\right| _{x=y=p}. \end{aligned}$$

By changing the variables \(s=x+y,\ r=x-y\) we write

$$\begin{aligned} w_{p}\left( D_{s},D_{r}\right)&\doteqdot u_{p}\left( -D_{x}\right) v_{p}\left( D_{y}\right) =u_{p}\left( -D_{s}-D_{r}\right) v_{p}\left( D_{s}-D_{r}\right) ,\\ z_{p}\left( D_{s},D_{r}\right)&\doteqdot u_{p}\left( D_{x}\right) v_{p}\left( -D_{y}\right) =u_{p}\left( D_{s}+D_{r}\right) v_{p}\left( -D_{s}+D_{r}\right) . \end{aligned}$$

By the Leibniz formula

$$\begin{aligned} u_{p}\left( -D_{x}\right) v_{p}\left( D_{y}\right) \left( e_{i}\left( r\right) \varphi \left( \frac{s}{2}\right) \right) _{r=0}=w_{p}\left( D_{s} ,D_{r}\right) \left( e_{i}\left( r\right) \varphi \left( \frac{s}{2}\right) \right) _{r=0}\\ =\sum _{j}\frac{1}{j!}D^{j}e_{i}\left( 0\right) w_{p}^{\left( j\right) }\left( D_{s},0\right) \varphi \left( \frac{s}{2}\right) =\frac{1}{i!}w_{p}^{\left( i\right) }\left( D_{s},0\right) \varphi \left( \frac{s}{2}\right) , \end{aligned}$$

where

$$\begin{aligned} w^{\left( i\right) }\left( \sigma ,\rho \right) \doteqdot \frac{\partial ^{i}w\left( \sigma ,\rho \right) }{\partial ^{i}\rho } \end{aligned}$$

for \(i\in \mathbb {Z}_{+}^{n}.\) Note that \(w^{\left( i\right) }\left( \sigma ,0\right) =\left( -1\right) ^{\left| i\right| }z^{\left( i\right) }\left( 0,-\sigma \right) \) which implies

$$\begin{aligned} \mathrm {A}_{t}\left( u,v\right)&\doteqdot \sum _{i\in \mathbb {Z}_{+}^{n} }\left( D-t\right) ^{i}\left( u*_{e_{i}}v\right) \\&=\sum _{p\in \Lambda }\sum _{i}u_{p}\left( -D_{x}\right) v_{p}\left( D_{y}\right) \left( \frac{\left( x-y\right) ^{i}}{i!}\left( -D-t\right) ^{i}\varphi \left( \frac{x+y}{2}\right) \right) \left. {}\right| _{x=y=p}\\&=\sum _{p}\sum _{i}w_{p}^{\left( i\right) }\left( D_{s},0\right) \left( -D_{s}-t\right) ^{i}\varphi \left( \frac{s}{2}\right) \left. {}\right| _{s=p}\\&=\sum _{p}\sum _{i}z_{p}^{\left( i\right) }\left( 0,-D_{s}\right) \left( D_{s}+t\right) ^{i}\varphi \left( \frac{s}{2}\right) \left. {}\right| _{s=p} =\sum _{p}z_{p}\left( 0,t\right) \varphi \left( p\right) , \end{aligned}$$

since by the Taylor formula

$$\begin{aligned} \sum _{i}z_{p}^{\left( i\right) }\left( 0,-D_{s}\right) \left( D_{s}+t\right) ^{i}=z_{p}\left( 0,t\right) =u_{p}\left( t\right) v_{p}\left( t\right) . \end{aligned}$$

This yields (6). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palamodov, V.P. A Geometric Characterization of a Class of Poisson Type Distributions. J Fourier Anal Appl 23, 1227–1237 (2017). https://doi.org/10.1007/s00041-016-9509-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-016-9509-3

Keywords

Mathematics Subject Classification

Navigation