Skip to main content
Log in

Adaptative Decomposition: The Case of the Drury–Arveson Space

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

The maximum selection principle allows to give expansions, in an adaptive way, of functions in the Hardy space \(\mathbf H_2\) of the disk in terms of Blaschke products. The expansion is specific to the given function. Blaschke factors and products have counterparts in the unit ball of \(\mathbb C^N\), and this fact allows us to extend in the present paper the maximum selection principle to the case of functions in the Drury–Arveson space of functions analytic in the unit ball of \(\mathbb C^N\). This will give rise to an algorithm which is a variation in this higher dimensional case of the greedy algorithm. We also introduce infinite Blaschke products in this setting and study their convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agler, J., McCarthy, J.: Complete Nevanlinna–Pick kernels. J. Funct. Anal. 175, 111–124 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Agler, J., McCarthy, J.: Pick interpolation and Hilbert function spaces. In: Graduate Studies in Mathematics, vol. 44. American Mathematical Society, Providence, RI (2002)

  3. Alpay, D.: A Complex Analysis Problem Book. Birkhäuser, Basel (2011)

    Book  MATH  Google Scholar 

  4. Alpay, D., Kaptanoğlu, H.T.: Integral formulas for a sub-Hardy space of the ball with complete Nevanlinna–Pick reproducing kernel. C. R. Acad. Sci. 333, 285–290 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alpay, D., Kaptanoğlu, H.T.: Gleason’s problem and homogeneous interpolation in Hardy and Dirichlet-type spaces of the ball. J. Math. Anal. Appl. 276(2), 654–672 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Alpay, D., Kaptanoğlu, H.T.: Some finite-dimensional backward shift-invariant subspaces in the ball and a related interpolation problem. Integral Equ. Oper. Theory 42, 1–21 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Alpay, D., Colombo, F., Qian, T., Sabadini, I.: Adaptative decomposition: the matrix-valued case. Proc. Am. Math. Soc (to appear)

  8. Arveson, W.: Subalgebras of \(C^*\)-algebras. III. Multivariable operator theory. Acta Math. 181, 159–228 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ball, J., Bolotnikov, V., Fang, Q.: Schur-class multipliers on the Arveson space: de Branges–Rovnyak reproducing kernel spaces and commutative transfer-function realizations. J. Math. Anal. Appl. 341(1), 519–539 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ball, J., Trent, T., Vinnikov, V.: Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces. In: Proceedings of Conference in Honor of the 60–th Birthday of M.A. Kaashoek. Operator Theory: Advances and Applications, vol. 122, pp. 89–138. Birkhauser, Basel (2001)

  11. Choquet, G.: Cours d’analyse, Tome II: Topologie. Masson, 120 bd Saint–Germain, Paris VI (1973)

  12. Drury, S.W.: A generalization of von Neumann’s inequality to the complex ball. Proc. Am. Math. Soc. 68(3), 300–304 (1978)

    MATH  MathSciNet  Google Scholar 

  13. Favard, J.: Cours d’analyse de l’École Polytechnique. Tome 1. Introduction-Operations. Gauthier-Villars, Paris (1968)

  14. Qian, T.: Two-dimensional adaptive Fourier decomposition. Math. Met. Appl. Sci. 39(10), 2431–2448 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  15. Qian, T., Wang, Y.B.: Adaptive decomposition into basic signals of non-negative instantaneous frequencies—a variation and realization of greedy algorithm. Adv. Comput. Math. 34(3), 279–293 (2011)

    Article  MathSciNet  Google Scholar 

  16. Rudin, W.: Function theory in the unit ball of \({\mathbb{C}^n}\). Springer, Berlin (1980)

    Book  MATH  Google Scholar 

  17. Shalit, O.: Operator theory and function theory in Drury–Arveson space and its quotients. In: Alpay, D. (ed.) Handbook of Operator Theory, pp. 1125–1180. Springer, Basel (2015)

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors thank the Macao Government FDCT 098/2012/A3 and D. Alpay thanks the Earl Katz family for endowing the chair which supported his research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Colombo.

Additional information

Communicated by Dorin Ervin Dutkay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alpay, D., Colombo, F., Qian, T. et al. Adaptative Decomposition: The Case of the Drury–Arveson Space. J Fourier Anal Appl 23, 1426–1444 (2017). https://doi.org/10.1007/s00041-016-9508-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-016-9508-4

Keywords

Mathematics Subject Classification

Navigation