Skip to main content
Log in

Harmonic Besov and Triebel–Lizorkin Spaces on the Ball

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Harmonic Besov and Triebel–Lizorkin spaces on the unit ball in \({\mathbb R}^d\) with full range of parameters are introduced and studied. It is shown that these spaces can be identified with respective Besov and Triebel–Lizorkin spaces of distributions on the sphere. Frames consisting of harmonic functions are also developed and frame characterization of the harmonic Besov and Triebel–Lizorkin spaces is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory, Second edition. Graduate Texts in Mathematics, vol. 137. New York, Springer (2001)

    Book  MATH  Google Scholar 

  2. Dai, F., Yuan, X.: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer, New York (2015)

    MATH  Google Scholar 

  3. Fefferman, C., Stein, E.: Some maximal inequalities. Amer. J. Math. 93, 107–115 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fefferman, C., Stein, E.: \(H^p\) spaces of several variables. Acta Math. 129, 137–193 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  5. Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34, 777–799 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93(1), 34–170 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Frazier, M., Jawerth, B., Weiss, G.: Littlewood-Paley theory and the study of function spaces. In: CBMS Regional Conference Series in Mathematics, 79. Amer. Math. Soc, Providence, RI (1991)

  8. Grafakos, L., Liu, L., Yang, D.: Vector-valued singular integrals and maximal functions on spaces of homogeneous type. Math. Scand. 104, 296–310 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Greenwald, H.C.: Lipschitz spaces on the surface of the unit sphere in Euclidean \(n\)-space. Pac. J. Math. 50, 63–80 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  10. Greenwald, H.C.: Lipschitz spaces of distributions on the surface of unit sphere in Euclidean \(n\)-space. Pac. J. Math. 70, 163–176 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ivanov, K.G., Petrushev, P., Xu, Y.: Sub-exponentially localized kernels and frames induced by orthogonal expansions. Math. Z. 264, 361–397 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kerkyacharian, G., Petrushev, P.: Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces. Trans. Amer. Math. Soc. 367, 121–189 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kyriazis, G., Petrushev, P., Xu, Y.: Decomposition of weighted Triebel-Lizorkin and Besov spaces on the ball. Proc. Lond. Math. Soc. 97(2), 477–513 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Meyer, Y.: Ondelettes et opérateurs I: ondelettes. Hermann, Paris (1990)

    MATH  Google Scholar 

  15. Müller, C.: Spherical Harmonics. Lecture Notes in Mathematics, vol. 17. Springer, Berlin (1966)

    Book  MATH  Google Scholar 

  16. Narcowich, F.J., Petrushev, P., Ward, J.D.: Localized tight frames on spheres. SIAM J. Math. Anal. 38, 574–594 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Narcowich, F.J., Petrushev, P., Ward, J.D.: Decomposition of Besov and Triebel-Lizorkin spaces on the sphere. J. Funct. Anal. 238, 530–564 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Oswald, P.: On Besov–Hardy–Sobolev spaces of analytic functions in the unit disc. Czechoslovak Math. J. 33(108), 408–426 (1983)

    MathSciNet  MATH  Google Scholar 

  19. Peetre, J.: New Thoughts on Besov Spaces. Duke Univ. Math. Ser., Duke Univ. Press, Durham (1976)

  20. Seeley, R.T.: Spherical harmonics. Amer. Math. Monthly 73, 115–121 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stein, E.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  22. Stein, E., Weiss, G.: Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  23. Szegö, G.: Orthogonal Polynomials. Amer. Math. Soc. Colloq. Publ., vol. 23. Amer. Math. Soc., Providence (1975)

    MATH  Google Scholar 

  24. Triebel, H.: Theory of Function Spaces. Monogr. Math., vol. 78. Birkhäuser, Basel (1983)

    Book  MATH  Google Scholar 

  25. Triebel, H.: Theory of Function Spaces II. Monogr. Math., vol. 84. Birkhäuser, Basel (1992)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pencho Petrushev.

Additional information

Communicated by Winfried Sickel.

The second author has been supported by NSF Grant DMS-1211528.

Appendix

Appendix

1.1 Proof of Lemma 2.3

Assume \(g\in \Pi _N\). Let \(\lambda \in C^\infty ({\mathbb R}_+)\) be an admissible function of type (a) in the sense of Definition 2.1. Set

$$\begin{aligned} \Lambda _N(x\cdot y):=\sum _{k\ge 0} \lambda (k/N)Z_k(x\cdot y). \end{aligned}$$

Clearly, \(\Lambda _N*g=g\) and by Theorem 2.2 for any \(M>0\) there exists a constant \(c>0\) such that for \(x, y, z\in {{\mathbb S}^{d-1}}\)

$$\begin{aligned} |\Lambda _N(x\cdot z) - \Lambda _N(y\cdot z)| \le \frac{c \rho (x, y)N^{d}}{(1+N\rho (x, z))^M}, \quad \hbox {if}\;\; \rho (x, y)\le N^{-1}. \end{aligned}$$
(9.1)

Fix \(0<{\varepsilon }<1\). For \(y\in {{\mathbb S}^{d-1}}\) we have

$$\begin{aligned} |g(y)| \le \inf _{u\in G(y, {\varepsilon }N^{-1})}|g(u)| + \sup _{u\in G(y, {\varepsilon }N^{-1})}|g(y)-g(u)| \end{aligned}$$

and hence

$$\begin{aligned} H(x)&:= \sup _{y\in {{\mathbb S}^{d-1}}}\frac{|g(y)|}{(1+N\rho (x, y))^{(d-1)/t}} \le \sup _{y\in {{\mathbb S}^{d-1}}}\frac{\inf _{u\in G(y, {\varepsilon }N^{-1})}|g(u)|}{(1+N\rho (x, y))^{(d-1)/t}}\\&\quad + \sup _{y\in {{\mathbb S}^{d-1}}}\frac{\sup _{u\in G(y, {\varepsilon }N^{-1})}|g(y)-g(u)|}{(1+N\rho (x, y))^{(d-1)/t}} =: H_1(x)+H_2(x). \end{aligned}$$

To estimate \(H_1(x)\) we first note that

$$\begin{aligned} \inf _{u\in G(y, {\varepsilon }N^{-1})}|g(u)| \le \left( \frac{1}{|G(y, {\varepsilon }N^{-1})|}\int _{G(y, {\varepsilon }N^{-1})}|g(u)|^t \mathrm{d}\sigma (u)\right) ^{1/t}, \end{aligned}$$

implying

$$\begin{aligned} H_1(x)&\le \left( \frac{|G(x, \rho (x, y)+{\varepsilon }N^{-1})|}{|G(y, {\varepsilon }N^{-1})|(1+N\rho (x, y))^{d-1}}\right) ^{1/t}\nonumber \\&\quad \times \left( \frac{1}{|G(x, \rho (x, y)+{\varepsilon }N^{-1})|} \int _{G(y, {\varepsilon }N^{-1})}|g(u)|^t \mathrm{d}\sigma (u) \right) ^{1/t}. \end{aligned}$$
(9.2)

Since \(G\big (x, \rho (x, y)+{\varepsilon }N^{-1}\big ) \subset G\big (y, 2\rho (x, y)+{\varepsilon }N^{-1}\big )\), we have

$$\begin{aligned} \big |G\big (x, \rho (x, y)+{\varepsilon }N^{-1}\big )\big |&\le \big |G\big (y, 2\rho (x, y)+{\varepsilon }N^{-1}\big )\big |\\&\le (2/{\varepsilon })^{d-1}(1+ N\rho (x, y))^{d-1}|G(y, {\varepsilon }N^{-1})|. \end{aligned}$$

We use the above in (9.2) and enlarge the region of integration in (9.2) from \(B(y, {\varepsilon }N^{-1})\) to \(G(x, \rho (x, y)+{\varepsilon }N^{-1})\) to bound \(H_1(x)\) by

$$\begin{aligned}&c {\varepsilon }^{(-d+1)/t}\sup _{y\in {{\mathbb S}^{d-1}}} \left( \frac{1}{|G(x, \rho (x, y)+{\varepsilon }N^{-1})|} \int _{G(x, \rho (x, y)+{\varepsilon }N^{-1})} |g(u)|^t \mathrm{d}\sigma (u)\right) ^{1/t}\\&\qquad \le c {\varepsilon }^{(-d+1)/t} \mathcal {M}_tg(x). \end{aligned}$$

Therefore,

$$\begin{aligned} H_1(x) \le c {\varepsilon }^{(-d+1)/t} \mathcal {M}_tg(x). \end{aligned}$$
(9.3)

We now estimate \(H_2(x)\). Using (9.1) we obtain

$$\begin{aligned} \sup _{u\in G(y, {\varepsilon }N^{-1})}|g(y)-g(u)|&\le \sup _{u\in G(y, {\varepsilon }N^{-1})} \int _{{\mathbb S}^{d-1}}|\Lambda _N(y\cdot z)- \Lambda _N(u\cdot z)||g(z)| \mathrm{d}\sigma (z)\\&\le c\sup _{u\in G(y, {\varepsilon }N^{-1})} \int _{{\mathbb S}^{d-1}}\frac{N^{d}\rho (y, u) |g(z)|}{(1+N\rho (y, z))^M} \mathrm{d}\sigma (z)\\&\le c{\varepsilon }\int _{{\mathbb S}^{d-1}}\frac{N^{d-1}|g(z)|}{(1+N\rho (y, z))^M} \mathrm{d}\sigma (z) \end{aligned}$$

and choosing \(M := (d-1)/t+d\) we get

$$\begin{aligned} H_2(x) \le c {\varepsilon }\sup _{y\in {{\mathbb S}^{d-1}}} \int _{{\mathbb S}^{d-1}}\frac{N^{d-1}|g(z)|}{(1+N\rho (y, x))^{\frac{d-1}{t}}(1+N\rho (y, z))^{\frac{d-1}{t}+d}} \mathrm{d}\sigma (z). \end{aligned}$$

Clearly, \(1+N\rho (x, z) \le (1+N\rho (y, x))(1+N\rho (y, z))\) and hence

$$\begin{aligned} H_2(x)&\le c {\varepsilon }\sup _{y\in {{\mathbb S}^{d-1}}} \int _{{\mathbb S}^{d-1}}\frac{N^{d-1}|g(z)|}{(1+N\rho (x, z))^{\frac{d-1}{t}}(1+N\rho (y, z))^{d}} \mathrm{d}\sigma (z)\\&\le c {\varepsilon }\sup _{z\in {{\mathbb S}^{d-1}}}\frac{|g(z)|}{(1+N\rho (x, z))^{\frac{d-1}{t}}} \sup _{y\in {{\mathbb S}^{d-1}}}\int _{{\mathbb S}^{d-1}}\frac{N^{d-1}}{(1+N\rho (y, z))^{d}} \mathrm{d}\sigma (z)\\&\le c' {\varepsilon }H(x), \end{aligned}$$

where for the last inequality we used (2.17). From this and (9.3) we infer

$$\begin{aligned} H(x) \le c {\varepsilon }^{(-d+1)/t} \mathcal {M}_t g(x) + c' {\varepsilon }H(x). \end{aligned}$$

Here the constants c and \(c'\) are independent of \({\varepsilon }\). Consequently, choosing \({\varepsilon }\) so that \(c' {\varepsilon }= 1/2\) and taking into account that \(H(x)<\infty \) we obtain (2.15). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, K., Petrushev, P. Harmonic Besov and Triebel–Lizorkin Spaces on the Ball. J Fourier Anal Appl 23, 1062–1096 (2017). https://doi.org/10.1007/s00041-016-9499-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-016-9499-1

Keywords

Mathematics Subject Classification

Navigation