Journal of Fourier Analysis and Applications

, Volume 22, Issue 6, pp 1416–1430 | Cite as

An \(L^1\)-Estimate for Certain Spectral Multipliers Associated with the Ornstein–Uhlenbeck Operator

  • Mikko Kemppainen


We study a class of spectral multipliers \(\phi (L)\) for the Ornstein–Uhlenbeck operator L arising from the Gaussian measure on \(\mathbb {R}^n\) and find a sufficient condition for integrability of \(\phi (L)f\) in terms of the admissible conical square function and a maximal function.


Conical square function Admissibility function Mehler kernel Gaussian measure 



The research has been supported by the Academy of Finland via the Centre of Excellence in Analysis and Dynamics Research (Project No. 271983). The author wishes to thank Alex Amenta and Jonas Teuwen for enlightening discussions.


  1. 1.
    Amenta, A., Kemppainen, M.: Non-uniformly local tent spaces. Publ. Mat. 59(1), 245–270 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Carbonaro, A., Dragičević, O.: Functional calculus for generators of symmetric contraction semigroups. arXiv:1308.1338 (2013)
  3. 3.
    Cowling, M.G.: Harmonic analysis on semigroups. Ann. Math. (2) 117(2), 267–283 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    García-Cuerva, J., Mauceri, G., Meda, S., Sjögren, P., Torrea, J.L.: Functional calculus for the Ornstein-Uhlenbeck operator. J. Funct. Anal. 183(2), 413–450 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    García-Cuerva, J., Mauceri, G., Sjögren, P., Torrea, J.L.: Spectral multipliers for the Ornstein-Uhlenbeck semigroup. J. Anal. Math. 78, 281–305 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hebisch, W., Mauceri, G., Meda, S.: Holomorphy of spectral multipliers of the Ornstein-Uhlenbeck operator. J. Funct. Anal. 210(1), 101–124 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Janson, S.: Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics, vol. 129. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  8. 8.
    Maas, J., van Neerven, J., Portal, P.: Conical square functions and non-tangential maximal functions with respect to the Gaussian measure. Publ. Mat. 55(2), 313–341 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Maas, J., van Neerven, J., Portal, P.: Whitney coverings and the tent spaces \(T^{1, q}(\gamma )\) for the Gaussian measure. Ark. Mat. 50(2), 379–395 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mauceri, G., Meda, S.: \({\rm BMO}\) and \(H^1\) for the Ornstein-Uhlenbeck operator. J. Funct. Anal. 252(1), 278–313 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Portal, P.: Maximal and quadratic Gaussian Hardy spaces. Rev. Mat. Iberoam. 30(1), 79–108 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Sjögren, P.: Operators associated with the Hermite semigroup—a survey. In: Proceedings of the Conference Dedicated to Professor Miguel de Guzmán (El Escorial, 1996), vol. 3, pp. 813–823 (1997)Google Scholar
  13. 13.
    Stein, E.M.: Topics in Harmonic Analysis Related to the Littlewood-Paley Theory. Annals of Mathematics Studies, No. 63. Princeton University Press, Princeton (1970)Google Scholar
  14. 14.
    van Neerven, J., Portal, P.: Finite speed of propagation and off-diagonal bounds for Ornstein-Uhlenbeck operators in infinite dimensions. arXiv:1507.02082 (2015)

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations