Journal of Fourier Analysis and Applications

, Volume 22, Issue 6, pp 1294–1355 | Cite as

Geometric Space–Frequency Analysis on Manifolds

  • Hans G. Feichtinger
  • Hartmut Führ
  • Isaac Z. Pesenson
Article

Abstract

This paper gives a survey of methods for the construction of space–frequency concentrated frames on Riemannian manifolds with bounded curvature, and the applications of these frames to the analysis of function spaces. In this general context, the notion of frequency is defined using the spectrum of a distinguished differential operator on the manifold, typically the Laplace–Beltrami operator. Our exposition starts with the case of the real line, which serves as motivation and blueprint for the material in the subsequent sections. After the discussion of the real line, our presentation starts out in the most abstract setting proving rather general sampling-type results for appropriately defined Paley–Wiener vectors in Hilbert spaces. These results allow a handy construction of Paley–Wiener frames in \(L_2(\mathbf {M})\), for a Riemann manifold of bounded geometry, essentially by taking a partition of unity in frequency domain. The discretization of the associated integral kernels then gives rise to frames consisting of smooth functions in \(L_2(\mathbf {M})\), with fast decay in space and frequency. These frames are used to introduce new norms in corresponding Besov spaces on \(\mathbf {M}\). For compact Riemannian manifolds the theory extends to \(L_p\) and associated Besov spaces. Moreover, for compact homogeneous manifolds, one obtains the so-called product property for eigenfunctions of certain operators and proves cubature formulae with positive coefficients which allow to construct Parseval frames that characterize Besov spaces in terms of coefficient decay. The general theory is exemplified with the help of various concrete and relevant examples which include the unit sphere and the Poincaré half plane.

Notes

Acknowledgments

The authors would like to thank the ESI (Erwin Schrödinger Institute, University Vienna), where the joint work for this paper has begun after the workshop on Time-Frequency Analysis (Spring 2014) and CIRM (Centre international de recontres mathematique, Luminy, Marseille), where the three authors had the chance to continue their work on this manuscript during the period of Hans Feichtinger’s Morlet Chair (winter term 2014/2015). The third author was supported in part by the National Geospatial-Intelligence Agency University Research Initiative (NURI), Grant HM1582-08-1-0019.

References

  1. 1.
    Antoine, J.-P., Rosca, D., Vandergheynst, P.: Wavelet transform on manifolds: old and new approaches. Appl. Comput. Harmon. Anal. 28(2), 189–202 (2010)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bahouri, Hajer: Gallagher, Isabelle: Paraproduit sur le groupe de Heisenberg et applications. (French) [Paraproduct on the Heisenberg group and applications]. Rev. Mat. Iberoamericana 17(1), 69–105 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baldi, P., Kerkyacharian, G., Marinucci, D., Picard, D.: Subsampling needlet coefficients on the sphere. Bernoulli 15, 438–463 (2009)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Baldi, P., Kerkyacharian, G., Marinucci, D., Picard, D.: Asymptotics for spherical needlets. Ann. Stat. 37(3), 1150–1171 (2009)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Benedetto, J.: Frame Decompositions, Sampling, And Uncertainty Principle Inequalities. Wavelets: Mathematics and applications. Studies in Advanced Mathematics, pp. 247–304. CRC, Boca Raton (1994)Google Scholar
  6. 6.
    Bergh, J., Löfström, J.: Interpolation Spaces. Springer, Berlin (1976)MATHCrossRefGoogle Scholar
  7. 7.
    Bernstein, S., Ebert, S.: Wavelets on \(S^{3}\) and \(SO(3)\): their construction, relation to each other and Radon transform of wavelets on \(SO(3)\). Math. Methods Appl. Sci. 33, 1895–1909 (2010)MathSciNetMATHGoogle Scholar
  8. 8.
    Bernstein, S., Ebert, S., Pesenson, I.Z.: Generalized splines for Radon transform on compact Lie groups with applications to crystallography. J. Fourier Anal. Appl. 19, 144–166 (2013)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bernstein, S., Pesenson, I.Z.: The Radon Transform on SO(3): Motivations, Generalizations, Discretization, Geometric Analysis and Integral Geometry. Contemporary Mathematics, vol. 598, pp. 77–96. American Mathematical Society, Providence (2013)Google Scholar
  10. 10.
    Birman, M., Solomyak, M.: Spectral Theory of Selfadjoint Operators in Hilbert Space. D. Reidel Publishing Co., Dordrecht (1987)MATHGoogle Scholar
  11. 11.
    Boas, R.: Entire Functions. Academic Press, New York (1954)MATHGoogle Scholar
  12. 12.
    Bui, H.Q., Duong, X.T., Yan, L.: Calderon reproducing formulas and new Besov spaces associated with operators. Adv. Math. 229(4), 2449–2502 (2012)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Butzer, P., Berens, H.: Semi-Groups of Operators and Approximation. Springer, Berlin (1967)MATHCrossRefGoogle Scholar
  14. 14.
    Butzer, P.L., Scherer, K.: Jackson and Bernstein-type inequalities for families of commutative operators in Banach spaces. J. Approx. Theory 5, 308–342 (1972)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Calixto, M., Guerrero, J., Sanchez-Monreal, J.C.: Sampling theorem and discrete Fourier transform on the hyperboloid. J. Fourier Anal. Appl. 17(2), 240–264 (2011)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Christensen, J., Olafsson, G.: Examples of coorbit spaces for dual pairs. Acta Appl. Math. 107, 25–48 (2009)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Christensen, J., Olafsson, G.: Coorbit spaces for dual pairs. Appl. Comput. Harmon. Anal. 31(2), 303–324 (2011)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Christensen, J.: Sampling in reproducing kernel Banach spaces on Lie groups. J. Approx. Theory 164(1), 179–203 (2012)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Coifman, R., Weiss, G.: Analyse Harmonique Non-commutative sur Certains Espaces Homogenes. Lecture Notes in Mathematics, vol. 242. Springer, Berlin (1971)Google Scholar
  20. 20.
    Coifman, R.R., Maggioni, M.: Diffusion wavelets. Appl. Comput. Harmon. Anal. 21, 53–94 (2006)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Coulhon, T., Kerkyacharian, G., Petrushev, P.: Heat kernel generated frames in the setting of Dirichlet spaces. J. Fourier Anal. Appl. 18(5), 995–1066 (2012)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Dai, F., Xu, Y.: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer, New York (2013)MATHCrossRefGoogle Scholar
  23. 23.
    Dahlke, S., Dahmen, W., Weinreich, I., et al.: Multiresolution analysis and wavelets on \(S^{2}\) and \(S^{3}\). Numer. Funct. Anal. Optim. 16, 19–41 (1995)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Dahlke, S., Steidl, G., Teschke, G.: Coorbit spaces and Banach frames on homogeneous spaces with applications to the sphere. Adv. Comput. Math. 21, 147–180 (2004)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    DeVore, R., Lorentz, G.: Constructive Approximation. Springer, Berlin (1993)MATHCrossRefGoogle Scholar
  26. 26.
    Duffin, R., Schaeffer, A.: A class of nonharmonic Fourier series. Trans. AMS 72, 341–366 (1952)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Durastanti, C., Fantaye, Y., Hansen, F., Marinucci, D., Pesenson, I.Z.: A simple proposal for radial 3D needlets. Phys. Rev. D 90, 103532 (2014)CrossRefGoogle Scholar
  28. 28.
    Ebata, M., Eguchi, M., Koizumi, S., Kumahara, K.: On sampling formulas on symmetric spaces. J. Fourier Anal. Appl. 12(1), 1–15 (2006)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Ebata, M., Eguchi, M., Koizumi, S., Kumahara, K.: Analogues of sampling theorems for some homogeneous spaces. Hiroshima Math. J. 36(1), 125–140 (2006)MathSciNetMATHGoogle Scholar
  30. 30.
    Ehler, M., Filbir, F., Mhaskar, H.N.: Locally learning biomedical data using diffusion frames. J. Comput. Biol. 19(11), 1251–1264 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Feichtinger, H., Gröchenig, K.: Theory and practice of irregular sampling. In: Benedetto, J.J., Frazier, M.W. (eds.) Wavelets: Mathematics and Applications. Studies in Advanced Mathematics, pp. 305–363. CRC, Boca Raton (1994)Google Scholar
  32. 32.
    Feichtinger, H., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decompositions. I. J. Funct. Anal. 86(2), 307–340 (1989)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Feichtinger, H., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decompositions. II. Monatsh. Math. 108(2–3), 129–148 (1989)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Feichtinger, H., Pesenson, I.: Iterative Recovery of Band Limited Functions on Manifolds. Contemporary Mathematics, vol. 345, pp. 137–153. AMS, Providence (2004)Google Scholar
  35. 35.
    Feichtinger, H., Pesenson, I.: A reconstruction method for band-limited signals on the hyperbolic plane. Sampl. Theory Signal Image Process. 4(2), 107–119 (2005)MathSciNetMATHGoogle Scholar
  36. 36.
    Filbir, F., Mhaskar, H.: A quadrature formula for diffusion polynomials corresponding to a generalized heat kernel. J. Fourier Anal. Appl. 16(5), 629–657 (2010)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Filbir, F., Mhaskar, H.N.: Marcinkiewicz-Zygmund measures on manifolds. J. Complex. 27(6), 568–596 (2011)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34, 777–799 (1985)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Führ, H.: Abstract Harmonic Analysis of Continuous Wavelet Transforms. Lecture Notes in Mathematics, vol. 1863. Springer, Berlin (2005)Google Scholar
  40. 40.
    Führ, H.: Painless Gabor expansions on homogeneous manifolds. Appl. Comput. Harmon. Anal. 26(2), 200–211 (2009)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Führ, H., Gröchenig, K.: Sampling theorems on locally compact groups from oscillation estimates. Math. Z. 255(1), 177–194 (2007)MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Führ, H., Mayeli, A.: Homogeneous Besov spaces on stratified Lie groups and their wavelet characterization. J. Funct. Spac. Appl., 2012, p.Art. ID 523586, 41Google Scholar
  43. 43.
    Führ, H., Pesenson, I.: Poincaré and Plancherel-Polya inequalities in harmonic analysis on weighted combinatorial graphs. SIAM J. Discret. Math. 27(4), 2007–2028 (2013)MATHCrossRefGoogle Scholar
  44. 44.
    Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere, with Applications to Geomathematics. Clarendon Press, Oxford (1998)MATHGoogle Scholar
  45. 45.
    Freeden, W., Volker, M.: Multiscale Potential Theory. Birkhäuser, Boston (2004)MATHCrossRefGoogle Scholar
  46. 46.
    Furioli, G., Melzi, C., Veneruso, A.: Littlewood-Paley decompositions and Besov spaces on Lie groups of polynomial growth. Math. Nachr. 279, 1028–1040 (2006)MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Geller, D., Mayeli, A.: Continuous wavelets on compact manifolds. Math. Z. 262, 895–927 (2009)MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Geller, D., Mayeli, A.: Nearly tight frames and space-frequency analysis on compact manifolds. Math. Z. 263, 235–264 (2009)MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Geller, D., Mayeli, A.: Besov spaces and frames on compact manifolds. Indiana Univ. Math. J. 58(5), 2003–2042 (2009)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Geller, D., Marinucci, D.: Mixed needlets. J. Math. Anal. Appl. 375, 610–630 (2011)MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Geller, D., Pesenson, I.: Band-limited localized Parseval frames and Besov spaces on compact homogeneous manifolds. J. Geom. Anal. 21(2), 334–371 (2011)MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Geller, D., Pesenson, I.: n-Widths and Approximation Theory on Compact Riemannian Manifolds, Commutative and Noncommutative Harmonic Analysis and Applications. Contemporary Mathematics, vol. 603, pp. 111–122. American Mathematical Society, Providence (2013)Google Scholar
  53. 53.
    Geller, D., Pesenson, I.: Kolmogorov and linear widths of Balls in Sobolev spaces on compact manifolds. Math. Scand. 115(1), 96–122 (2014)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Gröchenig, K.: Describing functions: atomic decompositions versus frames. Monatsh. Math. 112(3), 1–41 (1991)MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001)MATHCrossRefGoogle Scholar
  56. 56.
    Han, Y., Müller, D., Yang, D.: Littlewood–Paley characterizations for Hardy spaces on spaces of homogeneous type. Math. Nachr. 279, 1505–1537 (2006)MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Han, Y., Müller, D., Yang, D.: A Theory of Besov and Triebel-Lizorkin Spaces on Metric Measure Spaces Modeled on Carnot-Caratheodory Spaces. Abstract and Applied Analysis, vol. 2008. Hindawi Publishing Corporation, Cairo (2009)Google Scholar
  58. 58.
    Hebey, E.: Sobolev Spaces on Riemannian Manifolds. Springer, Berlin (1996)MATHCrossRefGoogle Scholar
  59. 59.
    Helgason, S.: Geometric Analysis on Symmetric Spaces. Mathematical Surveys and Monographs. AMS, Providence (2009)MATHGoogle Scholar
  60. 60.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators. III. Pseudo-differential Operators. Springer, Berlin (2007)MATHCrossRefGoogle Scholar
  61. 61.
    Kempf, A.: Covariant information-density cutoff in curved space-time. Phys. Rev. Lett. 92(22), 221301 (2004)MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    Kempf, A., Martin, R.T.W.: Information theory, spectral geometry, and quantum gravity. Phys. Rev. Lett. 100(2), 021304 (2008)MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Kempf, A., Chatwin-Davies, A., Martin, R.T.W.: A fully covariant information-theoretic ultraviolet cutoff for scalar fields in expanding Friedmann Robertson Walker spacetimes. J. Math. Phys. 54(2), 022301 (2013)MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    Kerkyacharian, G., Petrushev, P.: Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces (2012) arXiv:1210.6237
  65. 65.
    Klainerman, S., Rodnianski, I.: A geometric approach to the Littlewood-Paley theory. Geom. Funct. Anal. 16(1), 126–163 (2006)MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Krein, S., Petunin, Y., Semenov, E.: Interpolation of Linear Operators. Translations of Mathematical Monographs, vol. 54. AMS, Providence (1982)Google Scholar
  67. 67.
    Krein, S., Pesenson, I.: Interpolation Spaces and Approximation on Lie Groups. The Voronezh State University, Voronezh (1990). (Russian)MATHGoogle Scholar
  68. 68.
    Lions, J.-L., Magenes, E.: Non-Homogeneous Boundary Value Problem and Applications. Springer, Berlin (1975)MATHGoogle Scholar
  69. 69.
    Maggioni, M., Mhaskar, H.N.: Diffusion polynomial frames on metric measure spaces. Appl. Comput. Harmon. Anal. 24(3), 329–353 (2008)MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    Mallat, S.: Group invariant scattering. Commun. Pure Appl. Math. 65(10), 1331–1398 (2012)MathSciNetMATHCrossRefGoogle Scholar
  71. 71.
    Marinucci, D., Peccati, G.: Random Fields on the Sphere. Representation, Limit Theorems and Cosmological Applications. London Mathematical Society Lecture Note Series, vol. 389. Cambridge University Press, Cambridge (2011)Google Scholar
  72. 72.
    Marinucci, D., et al.: Spherical needlets for CMB data analysis. Mon. Not. R. Astron. Soc. 383, 539–545 (2008)CrossRefGoogle Scholar
  73. 73.
    Müller, D., Yang, D.: A difference characterization of Besov and Triebel-Lizorkin spaces on RD-spaces. Forum Math. 21, 259–298 (2009)MathSciNetMATHCrossRefGoogle Scholar
  74. 74.
    Narcowich, F.J., Petrushev, P., Ward, J.: Localized tight frames on spheres. SIAM J. Math. Anal. 38, 574–594 (2006)MathSciNetMATHCrossRefGoogle Scholar
  75. 75.
    Narcowich, F.J., Petrushev, P., Ward, J.: Decomposition of Besov and Triebel-Lizorkin spaces on the sphere. J. Funct. Anal. 238, 530–564 (2006)MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    Nikol’skii, S.: Approximation of Functions of Several Variables and Imbedding Theorems. Springer, Berlin (1975)MATHCrossRefGoogle Scholar
  77. 77.
    Nursultanov, E., Ruzhansky, M., Tikhonov, S.: Nikolskii inequality and Besov, Triebel-Lizorkin, Wiener and Beurling spaces on compact homogeneous manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (2014, to appear). arXiv:1403.3430
  78. 78.
    Nursultanov, E., Ruzhansky, M., Tikhonov, S.: Nikolskii inequality and functional classes on compact Lie groups, Funct. Anal. Appl. 49, 226–229 (2015)Google Scholar
  79. 79.
    Ortega-Cerda, J., Pridhnani, B.: Beurling-Landau’s density on compact manifolds. J. Funct. Anal. 263(7), 2102–2140 (2012)MathSciNetMATHCrossRefGoogle Scholar
  80. 80.
    Pasquale, A.: A Paley-Wiener theorem for the inverse spherical transform. Pac. J. Math. 193, 143–176 (2000)MathSciNetMATHCrossRefGoogle Scholar
  81. 81.
    Peetre, J., Sparr, G.: Interpolation on normed Abelian groups. Ann. Mat. Pura Appl. 92, 217–262 (1972)MathSciNetMATHCrossRefGoogle Scholar
  82. 82.
    Pesenson, I.: Interpolation spaces on Lie groups, (Russian) Dokl. Akad. Nauk SSSR 246(6), 1298–1303 (1979)Google Scholar
  83. 83.
    Pesenson, I.: Nikolskii-Besov spaces connected with representations of Lie groups, (Russian) Dokl. Akad. Nauk SSSR 273/1 (1983), 45–49; Engl. Transl. in Soviet Math. Dokl. 28 (1983)Google Scholar
  84. 84.
    Pesenson, I.: Abstract theory of Nikolskii-Besov spaces, Izv. Vyssh. Uchebn. Zaved. Mat. 59–70 (1988); Engl. Transl. in Soviet Mathematics, 32/6 (1988)Google Scholar
  85. 85.
    Pesenson, I.: The best approximation in a representation space of a Lie group. Dokl. Acad. Nauk USSR, v. 302(5), 1055–1059 (1988). (Engl. Transl. in Soviet Math. Dokl. 38/2 (1989), 384–388)Google Scholar
  86. 86.
    Pesenson, I.: Approximations in the representation space of a Lie group. Izv. Vyssh. Uchebn. Zaved. Mat. 7, 43–50 (1990). translation in Soviet Math. (Iz. VUZ) 34/7 (1990), 49–57Google Scholar
  87. 87.
    Pesenson, I.: The Bernstein inequality in representations of Lie groups. Dokl. Akad. Nauk SSSR 313(4), 803–806 (1990). translation in Soviet Math. Dokl. 42/1 (1991), 87–90Google Scholar
  88. 88.
    Pesenson, I.: Lagrangian splines, spectral entire functions and Shannon-Whittaker theorem on manifolds. Temple Univ. Res. Rep. 95–87, 1–28 (1995)Google Scholar
  89. 89.
    Pesenson, I.: Sampling of Paley-Wiener functions on stratified groups. J. Fourier Anal. Appl. 4, 269–280 (1998)MathSciNetMATHCrossRefGoogle Scholar
  90. 90.
    Pesenson, I.: Reconstruction of Paley-Wiener Functions on the Heisenberg Group, Voronezh Winter Mathematical Schools. American Mathematical Society Translations: Series 2, vol. 184, pp. 207–216. American Mathematical Society, Providence (1998)Google Scholar
  91. 91.
    Pesenson, I.: A reconstruction formula for band limited functions in \(L_{2}(R^{d})\). Proc. Am. Math. Soc. 127(12), 3593–3600 (1999)MathSciNetMATHCrossRefGoogle Scholar
  92. 92.
    Pesenson, I.: A sampling theorem on homogeneous manifolds. Trans. Am. Math. Soc. 352(9), 4257–4269 (2000)MathSciNetMATHCrossRefGoogle Scholar
  93. 93.
    Pesenson, I.: Sampling of band limited vectors. J. Fourier Anal. Appl. 7(1), 93–100 (2001)MathSciNetMATHCrossRefGoogle Scholar
  94. 94.
    Pesenson, I., Grinberg, E.: Inversion of the Spherical Radon Transform by a Poisson Type Formula, Radon Transforms and Tomography (South Hadley, MA, 2000). Contemporary Mathematics, vol. 278, pp. 137–146. American Mathematical Society, Providence (2001)Google Scholar
  95. 95.
    Pesenson, I.: An approach to spectral problems on Riemannian manifolds. Pac. J. Math. 215(1), 183–199 (2004)MathSciNetMATHCrossRefGoogle Scholar
  96. 96.
    Pesenson, I.: Poincaré-type inequalities and reconstruction of Paley-Wiener functions on manifolds. J. Geom. Anal. 4(1), 101–121 (2004)MathSciNetMATHCrossRefGoogle Scholar
  97. 97.
    Pesenson, I.: Variational splines on Riemannian manifolds with applications to integral geometry. Adv. Appl. Math. 33(3), 548–572 (2004)MathSciNetMATHCrossRefGoogle Scholar
  98. 98.
    Pesenson, I.: Band limited functions on quantum graphs. Proc. Am. Math. Soc. 133(12), 3647–3655 (2005)MathSciNetMATHCrossRefGoogle Scholar
  99. 99.
    Pesenson, I.: Deconvolution of band limited functions on symmetric spaces. Houst. J. Math. 32(1), 183–204 (2006)MathSciNetMATHGoogle Scholar
  100. 100.
    Pesenson, I.: Analysis of band-limited functions on quantum graphs. Appl. Comput. Harmon. Anal. 21(2), 230–244 (2006)MathSciNetMATHCrossRefGoogle Scholar
  101. 101.
    Pesenson, I.: Frames in Paley-Wiener Spaces on Riemannian Manifolds. Integral Geometry and Tomography. Contemporary Mathematics, vol. 405, pp. 137–153. American Mathematical Society, Providence (2006)Google Scholar
  102. 102.
    Pesenson, I.: Plancherel-Polya-type inequalities for entire functions of exponential type in Lp(Rd). J. Math. Anal. Appl. 330(2), 1194–1206 (2007)MathSciNetMATHCrossRefGoogle Scholar
  103. 103.
    Pesenson, I.: Bernstein-Nikolski inequality and Riesz interpolation Formula on compact homogeneous manifolds. J. Approx. Theory 150(2), 175–198 (2008)MathSciNetMATHCrossRefGoogle Scholar
  104. 104.
    Pesenson, I.: Sampling in Paley-Wiener spaces on combinatorial graphs. Trans. Am. Math. Soc. 360(10), 5603–5627 (2008)MathSciNetMATHCrossRefGoogle Scholar
  105. 105.
    Pesenson, I.: A Discrete Helgason-Fourier Transform for Sobolev and Besov Functions on Noncompact Symmetric Spaces. Contemporary Mathematics, vol. 464. American Mathematical Society, Providence (2008)Google Scholar
  106. 106.
    Pesenson, I.Z.: Paley-Wiener approximations and multiscale approximations in Sobolev and Besov spaces on manifolds. J. Geom. Anal. 4(1), 101–121 (2009)MathSciNetMATHGoogle Scholar
  107. 107.
    Pesenson, I.Z.: Bernstein-Nikolskii and Plancherel-Polya inequalities in Lp-norms on non-compact symmetric spaces. Math. Nachr. 282(2), 253–269 (2009)MathSciNetMATHCrossRefGoogle Scholar
  108. 108.
    Pesenson, I.Z., Zayed, A.: Paley-Wiener subspace of vectors in a Hilbert space with applications to integral transforms. J. Math. Anal. Appl. 353(2), 566–582 (2009)MathSciNetMATHCrossRefGoogle Scholar
  109. 109.
    Pesenson, I.Z.: Variational splines and Paley-Wiener spaces on combinatorial graphs. Constr. Approx. 29(1), 1–21 (2009)MathSciNetMATHCrossRefGoogle Scholar
  110. 110.
    Pesenson, I.Z., Pesenson, M.Z.: Approximation of Besov vectors by Paley-Wiener vectors in Hilbert spaces, Approximation Theory XIII: San Antonio 2010 (Springer Proceedings in Mathematics), by Marian Neamtu and Larry Schumaker, pp. 249–263Google Scholar
  111. 111.
    Pesenson, I.Z., Pesenson, M.Z.: Sampling, filtering and sparse approximations on combinatorial graphs. J. Fourier Anal. Appl. 16(6), 921–942 (2010)MathSciNetMATHCrossRefGoogle Scholar
  112. 112.
    Pesenson, I.Z., Geller, D.: Cubature formulas and discrete Fourier transform on compact manifolds in From Fourier Analysis and Number Theory to Radon Transforms and Geometry. In Memory of Leon Ehrenpreis (Developments in Mathematics 28) by H.M. Farkas, R.C. Gunning, M.I. Knopp and B.A. Taylor, Springer NY (2013)Google Scholar
  113. 113.
    Pesenson, I.Z.: Paley-Wiener-Schwartz nearly Parseval Frames on Noncompact Symmetric Spaces, Commutative and Noncommutative Harmonic Analysis and Applications. Contemporary Mathematics, vol. 603. American Mathematical Society, Providence (2013)Google Scholar
  114. 114.
    Pesenson, I.: Multiresolution analysis on compact Riemannian manifolds, In: Multiscale Analysis and Nonlinear Dynamics: From Genes to the Brain ( Reviews of Nonlinear Dynamics and Complexity) M. Z. Pesenson (Ed.), H.G. Schuster (Series Editor) Wiley (2013), pp. 65–83Google Scholar
  115. 115.
    Pesenson, I.Z.: Approximations in \(L_{p}\)-norms and Besov spaces on compact manifolds. Contemp. Math. 650, 199–210 (2015)MathSciNetMATHCrossRefGoogle Scholar
  116. 116.
    Pesenson, I.Z.: Sampling, splines and frames on compact manifolds. Int. J. Geomath. 6(1), 43–81 (2015)MathSciNetMATHCrossRefGoogle Scholar
  117. 117.
    Pesenson, I.Z.: Splines and Wavelets on Geophysically Relevant Manifolds. Handbook of Geomathematics. Springer, Berlin (2014)CrossRefGoogle Scholar
  118. 118.
    Pesenson, I.Z.: Boas-Type Formulas and Sampling in Banach Spaces with Applications to Analysis on Manifolds, in New Perspectives on Approximation and Sampling Theory. Springer International Publishing, Switzerland (2014)MATHGoogle Scholar
  119. 119.
    Pesenson, I.Z.: Sampling formulas for groups of operators in Banach spaces. Sampl. Theory Signal Image Process. 14(1), 1–16 (2015)MathSciNetMATHGoogle Scholar
  120. 120.
    Pesenson, I.Z.: Average sampling and frames on bounded domains. J. Complex. 31(5), 675–688 (2015)MathSciNetMATHCrossRefGoogle Scholar
  121. 121.
    Pesenson, I.Z.: Parseval frames for subelliptic spaces on compact homogeneous manifolds. In: International Conference on Harmonic Analysis and Applications, The Graduate Center, CUNY, NY, 2015Google Scholar
  122. 122.
    Pesenson, I.Z.: Estimates of Kolmogorov, Gelfand and linear n-widths on compact Riemannian manifolds, accepted by Proceedings of AMSGoogle Scholar
  123. 123.
    Peyre, G.: Manifold models for signals and images. Comput. Vis. Image Underst. 113, 249–260 (2009)CrossRefGoogle Scholar
  124. 124.
    Plancherel, M., Polya, G.: Fonctions entieres et integrales de Fourier multiples. Comment. Math. Helv. 9, 224–248 (1937)MathSciNetMATHCrossRefGoogle Scholar
  125. 125.
    Plancherel, M., Polya, G.: Fonctions entieres et integrales de Fourier multiples. Comment. Math. Helv. 10, 110–163 (1938)MathSciNetMATHCrossRefGoogle Scholar
  126. 126.
    Riesz, M.: Les fonctions conjuguees et les series de Fourier. C.R. Acad. Sci. 178, 1464–1467 (1924)Google Scholar
  127. 127.
    Skrzypczak, L.: Wavelet frames, Sobolev embeddings and negative spectrum of Schrödinger operators on manifolds with bounded geometry. J. Fourier Anal. Appl. 14(3), 415–442 (2008)MathSciNetMATHCrossRefGoogle Scholar
  128. 128.
    Stenzel, B.: A reconstruction theorem for Riemannian symmetric spaces of noncompact type. J. Fourier Anal. Appl. 15(6), 839–856 (2009)MathSciNetMATHCrossRefGoogle Scholar
  129. 129.
    Sogge, S.: Fourier Integrals in Classical Analysis. Cambridge University Press, Cambridge (1993)MATHCrossRefGoogle Scholar
  130. 130.
    Seeger, A., Sogge, C.D.: On the boundedness of functions of (pseudo-) differential operators on compact manifolds. Duke Math. J. 59, 709–736 (1989)MathSciNetMATHCrossRefGoogle Scholar
  131. 131.
    Taylor, M.: Pseudodifferential Operators. Princeton University Press, Princeton (1981)MATHGoogle Scholar
  132. 132.
    Terras, A.: Harmonic Analysis on Symmetric Spaces and Applications. Springer, Berlin (1985)MATHCrossRefGoogle Scholar
  133. 133.
    Triebel, H.: Spaces of Hardy-Sobolev-Besov type on complete Riemannian manifolds. Ark. Mat. 24, 299–337 (1986)MathSciNetMATHCrossRefGoogle Scholar
  134. 134.
    Triebel, H.: Function spaces on Lie groups. J. Lond. Math. Soc. 35, 327–338 (1987)MathSciNetMATHCrossRefGoogle Scholar
  135. 135.
    Triebel, H.: Theory of Function Spaces II. Monographs in Mathematics, vol. 84. Birkhäuser, Basel (1992)Google Scholar
  136. 136.
    Yang, D., Zhou, Y.: New properties of Besov and Triebel-Lizorkin spaces on RD-spaces. Manuscr. Math. 134, 59–90 (2011)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hans G. Feichtinger
    • 1
  • Hartmut Führ
    • 2
  • Isaac Z. Pesenson
    • 3
  1. 1.Faculty of Mathematics, NuHAGUniversity of ViennaWienAustria
  2. 2.Lehrstuhl A für MathematikRWTH AachenAachenGermany
  3. 3.Department of MathematicsTemple UniversityPhiladelphiaUSA

Personalised recommendations