Skip to main content
Log in

Hölder–Lipschitz Norms and Their Duals on Spaces with Semigroups, with Applications to Earth Mover’s Distance

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We introduce a family of bounded, multiscale distances on any space equipped with an operator semigroup. In many examples, these distances are equivalent to a snowflake of the natural distance on the space. Under weak regularity assumptions on the kernels defining the semigroup, we derive simple characterizations of the Hölder–Lipschitz norm and its dual with respect to these distances. As the dual norm of the difference of two probability measures is the Earth Mover’s Distance (EMD) between these measures, our characterizations give simple formulas for a metric equivalent to EMD. We extend these results to the mixed Hölder–Lipschitz norm and its dual on the product of spaces, each of which is equipped with its own semigroup. Additionally, we derive an approximation theorem for mixed Lipschitz functions in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  2. Bui, H.Q., Duong, X.T., Yan, L.: Calderóon reproducing formulas and new Besov spaces associated with operators. Adv. Math. 229(4), 2449–2502 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Butzer, P.L., Berens, H.: Semi-groups of Operators and Approximation. Springer, Berlin (1967)

    Book  MATH  Google Scholar 

  4. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing, pp. 380–388 (2002)

  5. Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press, Orlando (1984)

    MATH  Google Scholar 

  6. Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21(1), 5–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coifman, R.R., Lafon, S., Lee, A.B., Maggioni, M., Nadler, B., Warner, F., Zucker, S.W.: Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc. Natl. Acad. Sci. USA 102(21), 7426–7431 (2005)

    Article  Google Scholar 

  8. Coifman, R.R., Maggioni, M.: Diffusion wavelets. Appl. Comput. Harmon. Anal. 21(1), 53–94 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dachkovski, S.: Anisotropic function spaces and related semi-linear hypoelliptic equations. Math. Nachr. 248(1), 40–61 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston (1992)

    Book  MATH  Google Scholar 

  11. Donoho, D.L., Johnstone, I.M.: Neo-classical minimax problems, thresholding and adaptive function estimation. Bernoulli 2(1), 39–62 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dudley, R.M.: Real Analysis and Probability. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  13. Farkas, W.: Atomic and subatomic decompositions in anisotropic function spaces. Math. Nachr. 209, 83–113 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Folland, G.B.: Real Analysis: Modern Techniques and Their Applications, 2nd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  15. Goldberg, M.J., Kim, S.: Some remarks on diffusion distances. J. Appl. Math. 2010, 464815 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Goldberg, M.J., Kim, S.: An efficient tree-based computation of a met ric comparable to a natural diffusion distance. Appl. Comput. Harmon. Anal. 33(2), 261–281 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grigor’yan, A., Liu, L.: Heat kernel and Lipschitz-Besov spaces. Forum Math. (2014)

  18. Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer, New York (2001)

    Book  MATH  Google Scholar 

  19. Indyk, P., Thaper, N.: Fast image retrieval via embeddings. In: 3rd International Workshop on Statistical and Computational Theories of Vision (at ICCV) (2003)

  20. Li, P., Yau, S.T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156(1), 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  21. Little, A.V., Jung, Y.M., Maggioni, M.: Multiscale estimation of intrinsic dimensionality of data sets. In: AAAI fall symposium: manifold learning and its applications (2009)

  22. Marinai, S., Miotti, B., Soda, G.: Using earth mover’s distance in the bag-of- visual-words model for mathematical symbol retrieval. In: 2011 International Conference on Document Analysis and Recognition, pp. 1309–1313 (2011)

  23. Meyer, Y.: Wavelets and Operators. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  24. Neumann, M.H.: Multivariate wavelet thresholding in anisotropic function spaces. Stat. Sin. 10(2), 399–432 (2000)

    MathSciNet  MATH  Google Scholar 

  25. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)

    Article  MATH  Google Scholar 

  26. Sandler, R., Lindenbaum, M.: Nonnegative matrix factorization with earth mover’s distance metric for image analysis. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1590–1602 (2011)

    Article  Google Scholar 

  27. Schmeisser, H., Triebel, H.: Topics in Fourier Analysis and Function Spaces. Wiley, Chichester (1987)

    MATH  Google Scholar 

  28. Shirdhonkar, S., Jacobs, D.W.: Approximate earth mover’s distance in linear time. In: IEEE conference on computer vision and pattern recognition, pp. 1–8 (2008)

  29. Stein, E.M.: Topics in Harmonic Analysis, Related to the Littlewood-Paley Theory. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  30. Temlyakov, V.N.: Approximation of Periodic Functions. Computational Mathematics and Analysis Series. Nova Science Publishers Inc, New York (1993)

    MATH  Google Scholar 

  31. Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel (1983)

    Book  MATH  Google Scholar 

  32. Wan, X.: A novel document similarity measure based on earth mover’s distance. Inf. Sci. 177(18), 3718–3730 (2007)

    Article  Google Scholar 

  33. Zolotarev, V.M.: One-Dimensional Stable Distributions. American Mathematical Society, Providence (1986)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors thank Maxim Goldberg for many insightful and stimulating discussions throughout the development of this work. We also thank the anonymous reviewers for their helpful comments. Ronald Coifman was supported by NSF Grant No. 1309858.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Leeb.

Additional information

Communicated by Massimo Fornasier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leeb, W., Coifman, R. Hölder–Lipschitz Norms and Their Duals on Spaces with Semigroups, with Applications to Earth Mover’s Distance. J Fourier Anal Appl 22, 910–953 (2016). https://doi.org/10.1007/s00041-015-9439-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-015-9439-5

Keywords

Mathematics Subject Classification

Navigation