Skip to main content

Phase Retrieval from Gabor Measurements


Compressed sensing investigates the recovery of sparse signals from linear measurements. But often, in a wide range of applications, one is given only the absolute values (squared) of the linear measurements. Recovering such signals (not necessarily sparse) is known as the phase retrieval problem. We consider this problem in the case when the measurements are time-frequency shifts of a suitably chosen generator, i.e. coming from a Gabor frame. We prove an easily checkable injectivity condition for recovery of any signal from all \(N^2\) time-frequency shifts, and for recovery of sparse signals, when only some of those measurements are given.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. We in fact always obtain a frame in this way if \(g\ne 0\). The frame is even \(N \left\| g \right\| ^2\)-tight [23].


  1. Alexeev, B., Bandeira, A.S., Fickus, M., Mixon, D.G.: Phase retrieval with polarization. SIAM J. Image Sci. 7(1), 35–66 (2014)

    Article  MATH  Google Scholar 

  2. Alltop, W.O.: Complex sequences with low periodic correlations. IEEE Trans. Inform. Theory 26(3), 350–354 (1980)

    MathSciNet  Article  MATH  Google Scholar 

  3. Bajwa, W.U., Calderbank, R., Jafarpour, S.: Why Gabor frames? Two fundamental measures of coherence and their role in model selection. J. Commun. Netw. 12(4), 289–307 (2010)

    Article  Google Scholar 

  4. Balan, R., Casazza, P., Edidin, D.: On signal reconstruction without phase. Appl. Comput. Harmon. Anal. 20(3), 345–356 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  5. Bandeira, A.S., Cahill, J., Mixon, D.G., Nelson, A.A.: Saving phase: injectivity and stability for phase retrieval. Appl. Comput. Harmon. Anal. 37(1), 106–125 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  6. Candès, E.J., Eldar, Y.C., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. SIAM J. Image Sci. 6(1), 199–225 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  7. Casazza, P.G., Kutyniok, G. (eds.): Finite Frames: Theory and Applications. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York (2013)

    Google Scholar 

  8. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  9. Dinitz, J.H., Stinson, D.R.: Contemporary Design Theory: A Collection of Surveys, vol, 26. Willey, New York (1992)

    MATH  Google Scholar 

  10. Eldar, Y., Sidorenko, P., Mixon, D., Barel, S., Cohen, O.: Sparse phase retrieval from short-time Fourier measurements. IEEE Signal Process. Lett. 22(5), 638–642 (2015)

    Article  Google Scholar 

  11. Eldar, Y.C., Kutyniok, G. (eds).: In: Compressed sensing. Theory and Applications, Cambridge University Press, Cambridge (2012)

  12. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Aensing. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York (2013)

    MATH  Google Scholar 

  13. Gallager, R.G.: Circularly-symmetric gaussian random vectors (2008)

  14. Grant, M., Boyd, S.: CVX: Matlab Software for Disciplined convex Programming, Version 2.1. (2014)

  15. Gröchenig, K.: Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc, Boston (2001)

    MATH  Google Scholar 

  16. Guizar-Sicairos, M., Fienup, J.R.: Phase retrieval with transverse translation diversity: a nonlinear optimization approach. Opt. Exp. 16(10), 7264–7278 (2008)

    Article  Google Scholar 

  17. Iwen, M., Viswanathan, A., Wang, Y.: Fast Phase Retrieval for High-Dimensions. arXiv preprint  arXiv:1501.02377 (2015)

  18. Lam, T.Y., Leung, K.H.: On vanishing sums of roots of unity. J. Algebra 224(1), 91–109 (2000). doi:10.1006/jabr.1999.8089

  19. Meshulam, R.: An uncertainty inequality for finite abelian groups. Eur. J. Combin. 27(1), 63–67 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  20. Mixon, D.G.: Explicit matrices with the restricted isometry property: breaking the square-root bottleneck. arXiv preprint  arXiv:1403.3427 (2014)

  21. Nawab, S.H., Quatieri, T.F., Lim, J.S.: Signal reconstruction from short-time Fourier transform magnitude. IEEE Trans. Acoust. Speech Signal Process. 31(4), 986–998 (1983)

    Article  Google Scholar 

  22. Ohlsson, H., Eldar, Y.C.: On conditions for uniqueness in sparse phase retrieval. In IEEE Int. Conf. Acoust. Speech Signal Process, 2014 (ICASSP), pp. 1841–1845 (2014)

  23. Pfander, G.E.: Gabor Frames in Finite Dimensions. Finite Frames, pp. 193–239. Springer, Berlin (2013)

    MATH  Google Scholar 

  24. Shechtman, Y., Beck, A., Eldar, Y.C.: GESPAR: efficient phase retrieval of sparse signals. IEEE Trans. Signal Process. 62(4), 928–938 (2014)

    MathSciNet  Article  Google Scholar 

  25. Tao, T.: An uncertainty principle for cyclic groups of prime order. Math. Res. Lett. 12(1), 121–128 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  26. Wang, Y., Xu, Z.: Phase retrieval for sparse signals. Appl. Comput. Harmon. Anal. 37(3), 531–544 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  27. Xia, P., Zhou, S., Giannakis, G.B.: Achieving the Welch bound with difference sets. IEEE Trans. Inf. Theory 51(5), 1900–1907 (2005)

    MathSciNet  Article  MATH  Google Scholar 

Download references


The authors would like to thank Gitta Kutyniok and Peter Jung for fruitful discussions and remarks, and Martin Schäfer, who assisted in the proof-reading of the manuscript. I. B. acknowledges support by the Berlin Mathematical School. A. F. acknowledges support by Deutsche Forschungsgemeinschaft (DFG) Grant KU 1446/18-1 and by the Deutscher Akademischer Austausch Dienst (DAAD).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Axel Flinth.

Additional information

Communicated by Peter G. Casazza.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bojarovska, I., Flinth, A. Phase Retrieval from Gabor Measurements. J Fourier Anal Appl 22, 542–567 (2016).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • Phase retrieval
  • PhaseLift
  • Gabor frames
  • Time-frequency analysis
  • Sparse signals
  • Difference sets

Mathematics Subject Classification

  • 42C15
  • 42A38
  • 94A12
  • 65T50