Skip to main content
Log in

An Uncertainty Principle on Compact Manifolds

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Breitenberger’s uncertainty principle on the torus \(\mathbb {T}\) and its higher-dimensional analogue on \(\mathbb {S}^{d-1}\) are well understood. We describe an entire family of uncertainty principles on compact manifolds \((M,g)\), which includes the classical Heisenberg–Weyl uncertainty principle (for \(M=B(0,1) \subset \mathbb {R}^d\) the unit ball with the flat metric) and the Goh–Goodman uncertainty principle (for \(M=\mathbb {S}^{d-1}\) with the canonical metric) as special cases. This raises a new geometric problem related to small-curvature low-distortion embeddings: given a function \(f:M \rightarrow \mathbb {R}\), which uncertainty principle in our family yields the best result? We give a (far from optimal) answer for the torus, discuss disconnected manifolds and state a variety of other open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Breitenberger, E.: Uncertainty measures and uncertainty relations for angle observables. Found. Phys. 15(3), 353–364 (1985)

    Article  MathSciNet  Google Scholar 

  2. Clarkson, J.: Uniformly convex spaces. Trans. Am. Math. Soc. 40(3), 396–414 (1936)

  3. Dai, F., Xu, Y.: Hardy-Rellich inequality and uncertainty principle on the unit sphere. Constr. Approx. 40, 141–171 (2014)

  4. Erb, W.: Uncertainty principles on compact Riemannian manifolds. Appl. Comput. Harmon. Anal. 29(2), 182–197 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Folland, G., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3(3), 207–238 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Freeden, W., Windheuser, U.: Combined spherical harmonic and wavelet expansion—a future concept in Earth’s gravitational determination. Appl. Comput. Harmon. Anal. 4(1), 1–37 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Goh, S., Goodman, T.: Uncertainty principles and asymptotic behavior. Appl. Comput. Harmon. Anal. 16(1), 19–43 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kombe, I., Özaydin, M.: Improved Hardy and Rellich inequalities on Riemannian manifolds. Trans. Am. Math. Soc. 361(12), 6191–6203 (2009)

    Article  MATH  Google Scholar 

  9. Kombe, I., Özaydin, M.: Hardy-Poincaré, Rellich and uncertainty principle inequalities on Riemannian manifolds. Trans. Am. Math. Soc. 365(10), 5035–5050 (2013)

    Article  MATH  Google Scholar 

  10. Lieb, E., Loss, M.: Analysis. Second edition. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence, RI (2001)

    Google Scholar 

  11. Narcowich, F., Ward, J.: Nonstationary wavelets on the m-sphere for scattered data. Appl. Comput. Harmon. Anal. 3(4), 324–336 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Prestin, J., Quak, W.: Optimal functions for a periodic uncertainty principle and multiresolution analysis. Proc. Edinburgh Math. Soc. 42(2), 225–242 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Prestin, J., Quak, E., Rauhut, H., Selig, K.: On the connection of uncertainty principles for functions on the circle and on the real line. J. Fourier Anal. Appl. 9(4), 387–409 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rösler, M., Voit, M.: An uncertainty principle for ultraspherical expansions. J. Math. Anal. Appl. 209(2), 624–634 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author was supported by SFB 1060 of the DFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Steinerberger.

Additional information

Communicated by Gerald B. Folland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinerberger, S. An Uncertainty Principle on Compact Manifolds. J Fourier Anal Appl 21, 575–599 (2015). https://doi.org/10.1007/s00041-014-9382-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-014-9382-x

Keywords

Mathematics Subject Classification

Navigation