Skip to main content
Log in

Another Way to Look at Spectral Asymptotics on Spheres

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

The exact spectrum of the Laplacian on spheres is well-known, and produces a relatively large remainder in the Weyl asymptotic formula. We observe that we can obtain an exact asymptotic formula with no remainder if we take a finite sum of terms involving powers and periodic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Using the usual notation that \([s]\) is the integral part of \(s\) and \(\langle s\rangle \) is the fractional part of \(s\).

References

  1. Fox, J., Strichartz, R.S.: Unexpected spectral asymptotics for wave equations on certain spacetimes (preprint)

  2. Fukushima, M., Shima, T.: On a spectral analysis for the Sierpiński gasket. Potential Anal. 1(1), 1–35 (1992). MR1245223 (95b:31009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Guillemin, V.: Lectures on spectral theory of elliptic operators. Duke Math. J. 44(3), 485–517 (1977). MR0448452 (56 #6758)

    Article  MathSciNet  Google Scholar 

  4. Guillemin, V.: The Radon transform on Zoll surfaces. Adv. Math. 22(1), 85–119 (1976). MR0426063 (54 #14009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Jayakar, S., Strichartz, R.S.: Average number of lattice points in a disk. Comm. Pure Appl. Anal (to appear)

  6. Kigami, J., Lapidus, M.L.: Weyl’s problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals. Commun. Math. Phys. 158(1), 93–125 (1993). MR1243717 (94m:58225)

    Article  MATH  MathSciNet  Google Scholar 

  7. Sogge, C.D.: Hangzhou Lectures on Eigenfunctions of the Laplacian, Annals of Math Studies 188. Princeton Univerity Press, Princeton (2014)

    Book  Google Scholar 

  8. Strichartz, R.S.: Differential Equations on Fractals. Princeton University Press, Princeton (2006). MR2246975 (2007f:35003)

    MATH  Google Scholar 

  9. Strichartz, R.S.: Exact spectral asymptotics on the Sierpinski gasket. Proc. Am. Math. Soc. 140(5), 1749–1755 (2012). MR2869159

    Article  MATH  MathSciNet  Google Scholar 

  10. Strichartz, R.S.: Average error for spectral asymptotics on sufraces, preprint.

  11. Uribe, A., Zelditch, S.: Spectral statistics on Zoll surfaces. Commun. Math. Phys. 154(2), 313–346 (1993). MR1224082 (95b:58161)

    Article  MATH  MathSciNet  Google Scholar 

  12. Weinstein, A.: Asymptotics of eigenvalue clusters for the Laplacian plus a potential. Duke Math. J. 44(4), 883–892 (1977). MR0482878 (58 #2919)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Robert S. Strichartz supported by the National Science Foundation grant DMS-1162045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Strichartz.

Additional information

Communicated by Hans G. Feichtinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strichartz, R.S. Another Way to Look at Spectral Asymptotics on Spheres. J Fourier Anal Appl 21, 401–404 (2015). https://doi.org/10.1007/s00041-014-9377-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-014-9377-7

Keywords

Mathematics Subject Classification

Navigation