Journal of Fourier Analysis and Applications

, Volume 20, Issue 5, pp 1020–1049 | Cite as

Ulyanov-type Inequalities Between Lorentz–Zygmund Spaces

  • Amiran Gogatishvili
  • Bohumír Opic
  • Sergey Tikhonov
  • Walter Trebels


We establish inequalities of Ulyanov-type for moduli of smoothness relating the source Lorentz–Zygmund space \(\, L^{p,r}(\log L)^{\alpha -\gamma },\, \gamma >0,\) and the target space \(\, L^{p^*,s}(\log L)^\alpha \) over \(\, {\mathbb R}^n\) if \(\, 1<p<p^*<\infty \) and over \(\, \mathbb {T}^n\) if \(\, 1<p \le p^*<\infty .\) The stronger logarithmic integrability (corresponding to \(\, L^{p^*,s}(\log L)^\alpha \)) is balanced by an additional logarithmic smoothness.


Moduli of smoothness \(K\)-functionals Lorentz–Zygmund spaces 

Mathematics Subject Classification

Primary 41A17 46E30 Secondary 42B15 46E35 



The authors thank the referees for useful comments and suggestions that led to the improvement of the paper. Part of this work was done while the authors were at the Centre de Recerca Matemàtica (Barcelona) in 2011. This research was partially supported by the MTM 2011-27637, 2014 SGR 289, RFFI 13-01-00043, RVO: 67985840, the Grant Agency of the Czech Republic, Grants Nos. 201/08/0383, and P 201 13-14743S. The research of A. Gogatishvili was partially supported by the research grant no. 31/48 of the Shota Rustaveli National Science Foundation.


  1. 1.
    Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)MATHGoogle Scholar
  2. 2.
    Bennett, C., Rudnick, K.: On Lorentz–Zygmund spaces. Dissertationes Math. (Rozprawy Mat.) 175, 1–72 (1980)MathSciNetGoogle Scholar
  3. 3.
    Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988)MATHGoogle Scholar
  4. 4.
    Bergh, J., Löfström, J.: Interpolation Spaces. Springer, Berlin (1976)CrossRefMATHGoogle Scholar
  5. 5.
    Brézis, H., Wainger, S.: A note on limiting cases of Sobolev embeddings and convolution inequalities. Commun. Partial Differ. Equ. 5, 773–789 (1980)CrossRefMATHGoogle Scholar
  6. 6.
    Burenkov, V.I.: On the exact constant in the Hardy inequality with \(0<p<1\) for monotone functions. Proc. Steklov Inst. Math. 194(4), 59–63 (1993)MathSciNetGoogle Scholar
  7. 7.
    Butzer, P.L., Dyckhoff, H., Görlich, E., Stens, R.L.: Best trigonometric approximation, fractional order derivatives and Lipschitz classes. Can. J. Math. 29, 781–793 (1977)CrossRefMATHGoogle Scholar
  8. 8.
    Calderón, A.-P.: Intermediate spaces and interpolation, the complex method. Stud. Math. 24(2), 113–190 (1964)MATHGoogle Scholar
  9. 9.
    Dai, F., Ditzian, Z., Tikhonov, S.: Sharp Jackson inequalities. J. Approx. Theory 151, 86–112 (2008)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    DeVore, R., Riemenschneider, S., Sharpley, R.: Weak interpolation in Banach spaces. J. Funct. Anal. 33, 58–94 (1979)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Ditzian, Z.: Some remarks on approximation theorems on various Banach spaces. J. Math. Anal. Appl. 77, 567–576 (1980)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Ditzian, Z.: Rearrangement invariance and relations among measures of smoothness. Acta Math. Hung. 135, 270–285 (2012)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Ditzian, Z., Prymak, A.: Nikol’skii inequalities for Lorentz spaces. Rocky Mt. J. Math. 40, 209–223 (2010)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Ditzian, Z., Tikhonov, S.: Ul’yanov and Nikol’skiĭ-type inequalities. J. Approx. Theory 133, 100–133 (2005)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Ditzian, Z., Tikhonov, S.: Moduli of smoothness of functions and their derivatives. Stud. Math. 180, 143–160 (2007)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Edmunds, D.E., Gurka, P., Opic, B.: On embeddings of logarithmic Bessel potential spaces. J. Funct. Anal. 146, 116–150 (1997)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Edmunds, D.E., Triebel, H.: Logarithmic Sobolev spaces and their applications to spectral theory. Proc. Lond. Math. Soc. 71, 333–371 (1995)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Evans, W.D., Opic, B.: Real interpolation with logarithmic functors and reiteration. Can. J. Math. 52, 920–960 (2000)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Gogatishvili, A., Opic, B., Trebels, W.: Limiting reiteration for real interpolation with slowly varying functions. Math. Nachr. 278, 86–107 (2005)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Gogatishvili, A., Pick, L., Schneider, J.: Characterization of a rearrangement-invariant hull of a Besov space via interpolation. Rev. Mat. Complut. 25, 267–283 (2012)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Gol’dman, M.L.: Embedding of constructive and structural Lipschitz spaces in symmetric spaces. Trudy Mat. Inst. Steklov. 173, 90–112 (1986) (Russian) (translated in Proc. Steklov Inst. Math. 173(4), 93–118 (1987))Google Scholar
  22. 22.
    Hansson, K.: Imbedding theorems of Sobolev type in potential theory. Math. Scand. 45(1), 77–102 (1979)MATHMathSciNetGoogle Scholar
  23. 23.
    Haroske, D.D., Triebel, H.: Embedding of function spaces: a criterion in terms of differences. Complex Var. Elliptic Equ. 56, 931–944 (2011)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Herz, C.S.: Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms. J. Math. Mech. 18, 283–323 (1968)MATHMathSciNetGoogle Scholar
  25. 25.
    Kolyada, V.I.: Rearrangements of functions and embedding theorems. Russ. Math. Surv. 44(5), 73–117 (1989) (translated from. Uspekhi Mat. Nauk 44(5), 61–95 (1989))Google Scholar
  26. 26.
    Kolyada, V.I., Lerner, A.K.: On limiting embeddings of Besov spaces. Stud. Math. 171(1), 1–13 (2005)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Nursultanov, E., Tikhonov, S.: A sharp Remez inequality for trigonometric polynomials. Constr. Approx. 38(1), 101–132 (2013)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Opic, B., Pick, L.: On generalized Lorentz–Zygmund spaces. Math. Inequal. Appl. 2, 391–467 (1999)MATHMathSciNetGoogle Scholar
  29. 29.
    Opic, B., Trebels, W.: Bessel potentials with logarithmic components and Sobolev-type embeddings. Anal. Math. 26, 299–319 (2000)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Radoslavova, T.V.: Decrease orders of the \(L^p\)-moduli of continuity (\(0<p<\infty \)). Anal. Math. 5, 219–234 (1979)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Sherstneva, L.A.: Some embedding theorems for generalized Nikolskii classes in Lorentz spaces (Russian, English summary). Anal. Math. 14, 323–345 (1988)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Simonov, B., Tikhonov, S.: Sharp Ul’yanov-type inequalities using fractional smoothness. J. Approx. Theory 162, 1654–1684 (2010)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)MATHGoogle Scholar
  34. 34.
    Tikhonov, S.: On modulus of smoothness of fractional order. Real Anal. Exchange 30, 507–518 (2004/2005)Google Scholar
  35. 35.
    Tikhonov, S.: Weak type inequalities for moduli of smoothness: the case of limit value parameters. J. Fourier Anal. Appl. 16, 590–608 (2010)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Tikhonov, S., Trebels, W.: Ulyanov-type inequalities and generalized Liouville derivatives. Proc. R. Soc. Edinb. Sect. A 141, 205–224 (2011)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Tikhonov, S., Zeltser, M.: Weak monotonicity concept and its applications. In: Fourier Analysis, Trends in Mathematics, pp. 357–374 (2014)Google Scholar
  38. 38.
    Trebels, W.: Some Fourier multiplier criteria and the spherical Bochner–Riesz kernel. Rev. Roum. Math. Pures Appl. 20, 1173–1185 (1975)MATHMathSciNetGoogle Scholar
  39. 39.
    Trebels, W.: Inequalities for moduli of smoothness versus embeddings of function spaces. Arch. Math. (Basel) 94, 155–164 (2010)CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Trebels, W., Westphal, U.: K-functionals related to semigroups of operators. Rend. Circ. Mat. Palermo 2(Suppl No. 76), 603–620 (2005)MathSciNetGoogle Scholar
  41. 41.
    Trebels, W., Westphal, U.: On Ulyanov inequalities in Banach spaces and semigroups of linear operators. J. Approx. Theory 160, 154–170 (2009)CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Ul’yanov, P.L.: The imbedding of certain function classes \(H_p^\omega \). Izv. Akad. Nauk SSSR Ser. Mat. 3, 649–686 (1968)Google Scholar
  43. 43.
    Ul’yanov, P.L.: The imbedding of certain function classes \(H_p^{\omega }\). Math. USSR-Izv. 2(3), 601–637 (1968). (English transl.)CrossRefGoogle Scholar
  44. 44.
    Wainger, S.: Special trigonometric series in k-dimensions. Mem. Am. Math. Soc. 59, 1–102 (1965)MathSciNetGoogle Scholar
  45. 45.
    Wilmes, G.: On Riesz-type inequalities and \(K\)-functionals related to Riesz potentials in \(\mathbb{R}^{N}\). Numer. Funct. Anal. Optim. 1, 57–77 (1979)CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    Wilmes, G.: Some inequalities for Riesz potentials of trigonometric polynomials of several variables. Proc. Symp. Pure Math. 35(Part 1), 175–182 (1979)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Amiran Gogatishvili
    • 1
  • Bohumír Opic
    • 2
  • Sergey Tikhonov
    • 3
  • Walter Trebels
    • 4
  1. 1.Institute of Mathematics of the Academy of Sciences of the Czech RepublicPrague 1Czech Republic
  2. 2.Department of Mathematical Analysis, Faculty of Mathematics and PhysicsCharles UniversityPrague 8Czech Republic
  3. 3.ICREA and Centre de Recerca MatemàticaBarcelonaSpain
  4. 4.Fb. Mathematik, AG AlgebraTU DarmstadtDarmstadtGermany

Personalised recommendations