Auscher, P.: Change of angle in tent spaces. C. R. Math. Acad. Sci. Paris 349(5–6), 297–301 (2011)
Article
MATH
MathSciNet
Google Scholar
Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, New York (1988)
MATH
Google Scholar
Buckley, S.M.: Estimates for operator norms on weighted spaces and reverse Jensen inequalities. Trans. Am. Math. Soc. 340(1), 253–272 (1993)
Article
MATH
MathSciNet
Google Scholar
Cruz-Uribe, D., Martell, J.M., Pérez, C.: Sharp weighted estimates for classical operators. Adv. Math. 229(1), 408–441 (2012)
Article
MATH
MathSciNet
Google Scholar
Damián, W., Lerner, A.K., Pérez, C.: Sharp weighted bounds for multilinear maximal functions and Calderón–Zygmund operators. http://arxiv.org/abs/1211.5115
Dragičević, O., Grafakos, L., Pereyra, M.C., Petermichl, S.: Extrapolation and sharp norm estimates for classical operators on weighted Lebesgue spaces. Publ. Math. 49(1), 73–91 (2005)
MATH
Google Scholar
Duoandikoetxea, J.: Extrapolation of weights revisited: new proofs and sharp bounds. J. Funct. Anal. 260, 1886–1901 (2011)
Article
MATH
MathSciNet
Google Scholar
Fefferman, C.: Inequalities for strongly singular convolution operators. Acta Math. 124, 9–36 (1970)
Article
MATH
MathSciNet
Google Scholar
García-Cuerva, J., Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics. North-Holland Publishing Co., Amsterdam (1985)
MATH
Google Scholar
Hytönen, T., Pérez, C.: Sharp weighted bounds involving \({A}_{\infty }\). J. Anal. PDE 6(4), 777–818 (2013)
Lacey, M.T., Scurry, J.: Weighted weak type estimates for square functions. http://arxiv.org/abs/1211.4219
Lerner, A.K.: A pointwise estimate for the local sharp maximal function with applications to singular integrals. Bull. Lond. Math. Soc. 42(5), 843–856 (2010)
Article
MATH
MathSciNet
Google Scholar
Lerner, A.K.: Sharp weighted norm inequalities for Littlewood–Paley operators and singular integrals. Adv. Math. 226, 3912–3926 (2011)
Article
MATH
MathSciNet
Google Scholar
Lerner, A.K.: A simple proof of the \(A_2\) conjecture. Int. Math. Res. Not. 14, 3159–3170 (2013)
MathSciNet
Google Scholar
Lerner, A.K.: On an estimate of Calderón–Zygmund operators by dyadic positive operators. J. Anal. Math. 121(1), 141–161 (2013)
Article
MATH
MathSciNet
Google Scholar
Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Springer-Verlag, Berlin (1979)
Book
MATH
Google Scholar
Muckenhoupt, B., Wheeden, R.L.: Norm inequalities for the Littlewood–Paley function\(g_{\lambda }^{\ast }\). Trans. Am. Math. Soc. 191, 95–111 (1974)
MATH
MathSciNet
Google Scholar
Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. Academic Press, New York (1986)
MATH
Google Scholar
Wilson, J.M.: The intrinsic square function. Rev. Mat. Iberoam. 23, 771–791 (2007)
Article
MATH
MathSciNet
Google Scholar