Journal of Fourier Analysis and Applications

, Volume 20, Issue 4, pp 715–750 | Cite as

Discrete Hardy Spaces

  • Paula CerejeirasEmail author
  • Uwe Kähler
  • Min Ku
  • Frank Sommen


We study the boundary behavior of discrete monogenic functions, i.e. null-solutions of a discrete Dirac operator, in the upper and lower half space. Calculating the Fourier symbol of the boundary operator we construct the corresponding discrete Hilbert transforms, the projection operators arising from them, and discuss the notion of discrete Hardy spaces. Hereby, we focus on the 3D-case with the generalization to the n-dimensional case being straightforward.


Discrete Dirac operator Discrete Cauchy transform Discrete monogenic functions Hardy space 

Mathematics Subject Classification

Primary 44A15 Secondary 42A38 42C40 



This work was supported by Portuguese funds through the CIDMA—Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology (“FCT-Fundação para a Ciência e a Tecnologia”), within project PEst-OE/MAT/UI4106/2014. The third author is the recipient of a Postdoctoral Foundation from FCT (Portugal) under Grant No. SFRH/BPD/74581/2010.


  1. 1.
    Brackx, F., De Schepper, H., Sommen, F.: Discrete clifford analysis: a germ of function theory. In: Sabadini, I., et al. (eds.) Hypercomplex Analysis, pp. 37–53. Birkhäuser, Basel (2009)Google Scholar
  2. 2.
    Cerejeiras, P., Faustino, N., Vieira, N.: Numerical clifford analysis for nonlinear schrödinger problem. Numer. Methods Partial Differ. Equ. 24(4), 1181–1202 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Delanghe, R., Sommen, F., Soucek, V.: Clifford Algebra and Spinor-Valued Functions. Kluwer Academic, Dordrecht (1992)CrossRefzbMATHGoogle Scholar
  4. 4.
    De Ridder, H., De Schepper, H., Kähler, U., Sommen, F.: Discrete function theory based on skew weyl relations. Proc. Am. Math. Soc. 138(9), 3241–3256 (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    Faustino, N., Kähler, U.: Fischer decomposition for difference dirac operators. Adv. Appl. Clifford Algebras 17, 37–58 (2007)CrossRefzbMATHGoogle Scholar
  6. 6.
    Faustino, N., Kähler, U., Sommen, F.: Discrete dirac operators in clifford analysis. Adv. Appl. Clifford Algebras 17(3), 451–467 (2007)CrossRefzbMATHGoogle Scholar
  7. 7.
    Faustino, N., Gürlebeck, K., Hommel, A., Kähler, U.: Difference potentials for the navier–stokes equations in unbounded domains. J. Differ. Equ. Appl. 12(6), 577–595 (2006)CrossRefzbMATHGoogle Scholar
  8. 8.
    Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Princeton University Press, Princeton (1982)zbMATHGoogle Scholar
  9. 9.
    Forgy, E., Schreiber, U.: Discrete Differential Geometry on Causal Graphs. arXiv:math-ph/0407005v1 (2004) (preprint)Google Scholar
  10. 10.
    Gilbert, J.E., Murray, M.: Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge University Press, Cambridge (1991)CrossRefzbMATHGoogle Scholar
  11. 11.
    Gürlebeck, K., Hommel, A.: On finite difference Dirac operators and their fundamental solutions. Adv. Appl. Clifford Algebras 11(S2), 89–106 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Gürlebeck, K., Sprößig, W.: Quaternionic and Clifford calculus for physicists and engineers. Wiley, Chichester (1997)zbMATHGoogle Scholar
  13. 13.
    Hommel, A.: Fundamentallösungen partieller Differentialoperatoren und die Lösung diskreter Randwertprobleme mit Hilfe von Differenzenpotentialen. PhD thesis, Bauhaus-Universitaät Weimar, Germany (1998)Google Scholar
  14. 14.
    Kanamori, I., Kawamoto, N.: Dirac-Kaehler fermion from clifford product with noncommutative differential form on a lattice. Int. J. Mod. Phys. A19, 695–736 (2004)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Li, C., McIntosh, A., Qian, T.: Clifford algebras, Fourier transforms, and singular convolution operators on Lipschitz surfaces. Rev. Mat. Iberoamericana 10, 665–721 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Lovasz, L.: Discrete Analytic Functions: An Exposition, Surveys in Differential Geometry, vol. IX, pp. 1–44. International Press, Somerville (2004)Google Scholar
  17. 17.
    McIntosh, A.: Clifford algebras, Fourier theory, singular integrals, and harmonic functions on Lipschitz domains. In: Ryan, J. (ed.) Clifford Algebras in Analysis and related Topics, pp. 33–88. CRC Press, Boca Raton (1996)Google Scholar
  18. 18.
    Mitrea, M.: Clifford Wavelets, Singular Integrals, and Hardy Spaces. Springer, Berlin (1994)zbMATHGoogle Scholar
  19. 19.
    Ryabenskij, V.S.: The Method of Difference Potentials for Some Problems of Continuum Mechanics. Nauka, Moscow (1984). (Russian)Google Scholar
  20. 20.
    Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)zbMATHGoogle Scholar
  21. 21.
    Thomée, V.: Discrete interior Schauder estimates for elliptic difference operators. SIAM J. Numer. Anal. 5, 626–645 (1968)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Vaz, J.: Clifford-like calculus over lattices. Adv. Appl. Clifford Algebra 7(1), 37–70 (1997)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Paula Cerejeiras
    • 1
    Email author
  • Uwe Kähler
    • 1
  • Min Ku
    • 1
  • Frank Sommen
    • 2
  1. 1.Department of Mathematics, Center for Research and Development in Mathematics and ApplicationsUniversity of AveiroAveiroPortugal
  2. 2.Clifford Research Group, Department of Mathematical AnalysisGhent UniversityGhentBelgium

Personalised recommendations