Abstract
Commutators of bilinear pseudodifferential operators with symbols in the Hörmander class \(BS_{1, 0}^{1}\) and multiplication by Lipschitz functions are shown to be bilinear Calderón-Zygmund operators. A connection with a notion of compactness in the bilinear setting for the iteration of the commutators is also made.
This is a preview of subscription content, access via your institution.
References
Bényi, Á., Maldonado, D., Naibo, V., Torres, R.H.: On the Hörmander classes of bilinear pseudodifferential operators. Integral Equ. Oper. Theory 67(3), 341–364 (2010)
Bényi, Á., Bernicot, F., Maldonado, D., Naibo, V., Torres, R.H.: On the Hörmander classes of bilinear pseudodifferential operators, II. Indiana Univ. Math. J. To appear; Preprint at arXiv:1112.0486 [math.CA]
Bényi, Á., Nahmod, A.R., Torres, R.H.: Sobolev space estimates and symbolic calculus for bilinear pseudodifferential operators. J. Geom. Anal. 16(3), 431–453 (2006)
Bényi, Á., Oh, T.: On a class of bilinear pseudodifferential operators. J. Funct. Spaces Appl. 2013, 560976 (2013)
Bényi, Á., Torres, R.H.: Symbolic calculus and the transposes of bilinear pseudodifferential operators. Commun. Partial Differ. Equ. 28, 1161–1181 (2003)
Bényi, Á., Torres, R.H.: Compact bilinear operators and commutators. Proc. Am. Math. Soc. 141(10), 3609–3621 (2013)
Bernicot, F., Maldonado, D., Moen, K., Naibo, V.: Bilinear Sobolev-Poincaré inequalities and Leibniz-type rules. J. Geom. Anal. To appear; Preprint at arXiv:1104.3942 [math.CA]
Calderón, A.P.: Algebras of singular integral operators. AMS Proc. Symp. Math. 10, 18–55 (1966)
Calderón, A.P.: Commutators of singular integral operators. Proc. Nat. Acad. Sci. 53, 1092–1099 (1965)
Calderón, A.P.: Intermediate spaces and interpolation, the complex method. Stud. Math. 24, 113–190 (1964)
Coifman, R.R., Lions, P.L., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces. J. Math. Pures Appl. 72, 247–286 (1993)
Coifman, R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. Math. 103, 611–635 (1976)
Coifman, R.R., Meyer, Y.: Au-delà des Opérateurs Pseudo-diffeŕentiels. Astérisque, vol. 57. Société Math. de France, Paris (1978)
Coifman, R., Weiss, G.: Extension of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)
David, G., Journé, J.L.: A boundedness criterion for generalized Calderón-Zygmund operators. Ann. Math. 120, 371–397 (1984)
Grafakos, L., Maldonado, D., Naibo, V.: A remark on an end-point Kato-Ponce inequality. Preprint at http://www.math.missouri.edu/~loukas/articles.html
Grafakos, L., Oh, S.: The Kato-Ponce inequality. Commun. Partial Differ. Equs. To appear; Preprint at arXiv:1303.5144 [math.CA]
Grafakos, L., Torres, R.H.: Multilinear Calderón-Zygmund theory. Adv. Math. 165, 124–164 (2002)
Grafakos, L., Torres, R.H.: Maximal operator and weighted norm inequalities for multilinear singular integrals. Indiana Univ. Math. J. 51(5), 1261–1276 (2002)
Hart, J.: Bilinear square functions and vector-valued Calderón-Zygmund operators. J. Fourier Anal. Appl. 18(6), 1291–1313 (2012)
Hart, J.: Erratum to “Bilinear square functions and vector-valued Calderón-Zygmund operators”. J. Fourier Anal. Appl. To appear; Preprint at http://www.math.wayne.edu/~jhart/MyResearch.html
Hart, J.: A new proof of the bilinear T(1) theorem. Proc. Am. Math. Soc. To appear; Preprint at http://www.math.wayne.edu/~jhart/MyResearch.html
Hart, J.: A bilinear T(b) theorem for singular integral operators. Preprint at arXiv:1306.0385 [math.CA]
Iwaniec, T.: Nonlinear commutators and Jacobians. J. Fourier Anal. Appl. 3, 775–796 (1997)
Iwaniec, T., Sbordone, C.: Riesz transform and elliptic PDEs with VMO coefficients. J. Anal. Math. 74, 183–212 (1998)
Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)
Kenig, C., Ponce, G., Vega, L.: On unique continuation for nonlinear Schrödinger equations. Commun. Pure Appl. Math. 56, 1247–1262 (2003)
Meyer, Y., Coifman, R.R.: Wavelets: Calderón-Zygmund and Multilinear Operators. Cambridge University Press, Cambridge (1997)
Miyachi, A., Tomita, N.: Calderón-Vaillancourt type theorem for bilinear pseudo-differential operators. Indiana Univ. Math. J. To appear
Pérez, C., Torres, R.H.: Sharp maximal function estimates for multilinear singular integrals. Contemp. Math. 320, 323–331 (2003)
Pérez, C., Pradolini, G., Torres, R.H., Trujillo-González, R.: End-points estimates for iterated commutators of multilinear singular integrals. Bull. Lond. Math. Soc. To appear; Preprint at arXiv:1004.4976 [math.CA]
Stein, E.: Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993), 695 pp.
Tang, L.: Weighted estimates for vector-valued commutators of multilinear operators. Proc. R. Soc. Edinb., Sect. A, Math. 138, 897–922 (2008)
Uchiyama, A.: On the compactness of operators of Hankel type. Tôhoku Math. J. 30(1), 163–171 (1978)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Loukas Grafakos.
This work is partially supported by a grant from the Simons Foundation Grant (No. 246024 to Árpád Bényi). The second author acknowledges support from an AMS-Simons Travel Grant.
Rights and permissions
About this article
Cite this article
Bényi, Á., Oh, T. Smoothing of Commutators for a Hörmander Class of Bilinear Pseudodifferential Operators. J Fourier Anal Appl 20, 282–300 (2014). https://doi.org/10.1007/s00041-013-9312-3
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00041-013-9312-3
Keywords
- Bilinear pseudodifferential operators
- Bilinear Hörmander classes
- Compact bilinear operators
- Singular integrals
- Calderón-Zygmund theory
- Commutators