Advertisement

Journal of Fourier Analysis and Applications

, Volume 18, Issue 6, pp 1167–1194 | Cite as

Full Spark Frames

  • Boris Alexeev
  • Jameson Cahill
  • Dustin G. Mixon
Article

Abstract

Finite frame theory has a number of real-world applications. In applications like sparse signal processing, data transmission with robustness to erasures, and reconstruction without phase, there is a pressing need for deterministic constructions of frames with the following property: every size-M subcollection of the M-dimensional frame elements is a spanning set. Such frames are called full spark frames, and this paper provides new constructions using the discrete Fourier transform. Later, we prove that full spark Parseval frames are dense in the entire set of Parseval frames, meaning full spark frames are abundant, even if one imposes an additional tightness constraint. Finally, we prove that testing whether a given matrix is full spark is hard for NP under randomized polynomial-time reductions, indicating that deterministic full spark constructions are particularly significant because they guarantee a property which is otherwise difficult to check.

Keywords

Frames Spark Sparsity Erasures 

Mathematics Subject Classification (2000)

42C15 68Q17 

Notes

Acknowledgements

The authors thank Profs. Peter G. Casazza and Matthew Fickus for discussions on full spark frames, Prof. Dan Edidin and Will Sawin for discussions on algebraic geometry, and the anonymous referees for very helpful comments and suggestions. B.A. was supported by the NSF Graduate Research Fellowship under Grant No. DGE-0646086, J.C. was supported by NSF Grant No. DMS-1008183, DTRA/NSF Grant No. DMS-1042701 and AFOSR Grant No. FA9550-11-1-0245, and D.G.M. was supported by the A.B. Krongard Fellowship. The views expressed in this article are those of the authors and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government.

References

  1. 1.
    Bajwa, W.U., Calderbank, R., Mixon, D.G.: Two are better than one: fundamental parameters of frame coherence. Appl. Comput. Harmon. Anal. (2011). doi: 10.1016/j.acha.2011.09.005 Google Scholar
  2. 2.
    Balan, R., Casazza, P., Edidin, D.: On signal reconstruction without phase. Appl. Comput. Harmon. Anal. 20, 345–356 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Balan, R., Bodmann, B.G., Casazza, P.G., Edidin, D.: Fast algorithms for signal reconstruction without phase. Proc. SPIE 67011L, 1–9 (2007) Google Scholar
  4. 4.
    Balan, R., Bodmann, B.G., Casazza, P.G., Edidin, D.: Painless reconstruction from magnitudes of frame coefficients. J. Fourier Anal. Appl. 15, 488–501 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Blumensath, T., Davies, M.E.: Sampling theorems for signals from the union of finite-dimensional linear subspaces. IEEE Trans. Inf. Theory 55, 1872–1882 (2009) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bourguignon, S., Carfantan, H., Idier, J.: A sparsity-based method for the estimation of spectral lines from irregularly sampled data. IEEE J. Sel. Top. Signal Process. 1, 575–585 (2007) CrossRefGoogle Scholar
  7. 7.
    Cahill, J., Casazza, P.G., Heinecke, A.: A notion of redundancy for infinite frames. In: Proc. Sampl. Theory Appl. (2011) Google Scholar
  8. 8.
    Candès, E.J.: The restricted isometry property and its implications for compressed sensing. C. R. Acad. Sci. Paris, Ser. I 346, 589–592 (2008) zbMATHCrossRefGoogle Scholar
  9. 9.
    Candès, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51, 4203–4215 (2005) CrossRefGoogle Scholar
  10. 10.
    Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006) zbMATHCrossRefGoogle Scholar
  11. 11.
    Candès, E.J., Strohmer, T., Voroninski, V.: PhaseLift: Exact and stable signal recovery from magnitude measurements via convex programming. arXiv:1109.4499
  12. 12.
    Casazza, P.G., Tremain, J.C.: The Kadison-Singer problem in mathematics and engineering. Proc. Natl. Acad. Sci. USA 103, 2032–2039 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Casazza, P.G., Heinecke, A., Krahmer, F., Kutyniok, G.: Optimally sparse frames. IEEE Trans. Inf. Theory 57, 7279–7287 (2011) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Davenport, M.A., Duarte, M.F., Eldar, Y.C., Kutyniok, G.: Introduction to compressed sensing. In: Eldar, Y.C., Kutyniok, G. (eds.) Compressed Sensing: Theory and Applications. Cambridge University Press, Cambridge (2011) Google Scholar
  15. 15.
    Delvaux, S., Van Barel, M.: Rank-deficient submatrices of Fourier matrices. Linear Algebra Appl. 429, 1587–1605 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization. Proc. Natl. Acad. Sci. 100, 2197–2202 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Dykema, K., Strawn, N.: Manifold structure of spaces of spherical tight frames. Int. J. Pure Appl. Math. 28, 217–256 (2006) MathSciNetzbMATHGoogle Scholar
  18. 18.
    Evans, R.J., Isaacs, I.M.: Generalized Vandermonde determinants and roots of prime order. Proc. Am. Math. Soc. 58, 51–54 (1977) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Fickus, M., Mixon, D.G.: Deterministic matrices with the restricted isometry property. Proc. SPIE (2011) Google Scholar
  20. 20.
    Fickus, M., Mixon, D.G., Tremain, J.C.: Steiner equiangular tight frames. Linear Algebra Appl. (2011). doi: 10.1016/j.laa.2011.06.027 Google Scholar
  21. 21.
    Fuchs, J.-J.: Sparsity and uniqueness for some specific under-determined linear systems. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, pp. 729–732 (2005) Google Scholar
  22. 22.
    Gorodnitsky, I.F., Rao, B.D.: Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45, 600–616 (1997) CrossRefGoogle Scholar
  23. 23.
    Goyal, V.K.: Beyond traditional transform coding. Ph.D. Thesis, University California, Berkeley (1998) Google Scholar
  24. 24.
    Hall, P.: On representatives of subsets. J. Lond. Math. Soc. 10, 26–30 (1935) CrossRefGoogle Scholar
  25. 25.
    Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics. Springer, New York (1977) zbMATHGoogle Scholar
  26. 26.
    Holmes, R.B., Paulsen, V.I.: Optimal frames for erasures. Linear Algebra Appl. 377, 31–51 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Jungnickel, D., Pott, A., Smith, K.W.: Difference sets. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn., pp. 419–435 (2007) Google Scholar
  28. 28.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum, New York (1972) CrossRefGoogle Scholar
  29. 29.
    Lu, Y.M., Do, M.N.: A theory for sampling signals from a union of subspaces. IEEE Trans. Signal Process. 56, 2334–2345 (2008) MathSciNetCrossRefGoogle Scholar
  30. 30.
    Marx, D.: A parameterized view on matroid optimization problems. Theor. Comput. Sci. 410, 4471–4479 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    McCormick, S.T.: A combinatorial approach to some sparse matrix problems. Ph.D. Thesis, Stanford University (1983) Google Scholar
  32. 32.
    Mixon, D.G., Quinn, C., Kiyavash, N., Fickus, M.: Equiangular tight frame fingerprinting codes. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, pp. 1856–1859 (2011) Google Scholar
  33. 33.
    Mohimani, H., Babaie-Zadeh, M., Jutten, C.: A fast approach for overcomplete sparse decomposition based on smoothed 0 norm. IEEE Trans. Signal Process. 57, 289–301 (2009) MathSciNetCrossRefGoogle Scholar
  34. 34.
    Nakamura, S., Masson, G.M.: Lower bounds on crosspoints in concentrators. IEEE Trans. Comput. C-31, 1173–1179 (1982) CrossRefGoogle Scholar
  35. 35.
    Piff, M.J., Welsh, D.J.A.: On the vector representation of matroids. J. Lond. Math. Soc. 2, 284–288 (1970) MathSciNetCrossRefGoogle Scholar
  36. 36.
    Püschel, M., Kovačević, J.: Real, tight frames with maximal robustness to erasures. In: Proc. Data Compr. Conf., pp. 63–72 (2005) CrossRefGoogle Scholar
  37. 37.
    Rapcsák, T.: On minimization on Stiefel manifolds. Eur. J. Oper. Res. 143, 365–376 (2002) zbMATHCrossRefGoogle Scholar
  38. 38.
    Renes, J.: Equiangular tight frames from Paley tournaments. Linear Algebra Appl. 426, 497–501 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171–2180 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Rudelson, M., Vershynin, R.: On sparse reconstruction from Fourier and Gaussian measurements. Commun. Pure Appl. Anal. 61, 1025–1045 (2008) MathSciNetzbMATHGoogle Scholar
  41. 41.
    Stevenhagen, P., Lenstra, H.W.: Chebotarëv and his density theorem. Math. Intell. 18, 26–37 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Strawn, N.: Finite frame varieties: nonsingular points, tangent spaces, and explicit local parameterizations. J. Fourier Anal. Appl. 17, 821–853 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Strohmer, T.: A note on equiangular tight frames. Linear Algebra Appl. 429, 326–330 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Strohmer, T., Heath, R.W.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14, 257–275 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Tang, G., Nehorai, A.: Performance analysis for sparse support recovery. IEEE Trans. Inf. Theory 56, 1383–1399 (2010) MathSciNetCrossRefGoogle Scholar
  46. 46.
    Tao, T.: An uncertainty principle for cyclic groups of prime order. Math. Res. Lett. 12, 121–128 (2005) MathSciNetzbMATHGoogle Scholar
  47. 47.
    Tropp, J.A.: On the conditioning of random subdictionaries. Appl. Comput. Harmon. Anal. 25, 1–24 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Valiant, L., Vazirani, V.: NP is as easy as detecting unique solutions. Theor. Comput. Sci. 47, 85–93 (1986) MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Wipf, D.P., Rao, B.D.: Sparse Bayesian learning for basis selection. IEEE Trans. Signal Process. 52, 2153–2164 (2004) MathSciNetCrossRefGoogle Scholar
  50. 50.
    Xia, P., Zhou, S., Giannakis, G.B.: Achieving the Welch bound with difference sets. IEEE Trans. Inf. Theory 51, 1900–1907 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Zauner, G., Quantendesigns: Grundzüge einer nichtkommutativen Designtheorie. Ph.D. thesis, University of Vienna (1999) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Boris Alexeev
    • 1
  • Jameson Cahill
    • 2
  • Dustin G. Mixon
    • 3
  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA
  2. 2.Department of MathematicsUniversity of MissouriColumbiaUSA
  3. 3.Program in Applied and Computational MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations