Skip to main content
Log in

Weighted Bounds for Variational Walsh–Fourier Series

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

For 1<p<∞ and a weight wA p and a function in L p([0,1],w) we show that variational sums with sufficiently large exponents of its Walsh–Fourier series are bounded in L p(w). This strengthens a result of Hunt–Young and is a weighted extension of a variation norm Carleson theorem of Oberlin–Seeger–Tao–Thiele–Wright. The proof uses phase plane analysis and a weighted extension of a variational inequality of Lépingle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. We would like to point out that Xiaochun Li [12] has some unpublished results about weighted estimates for the bilinear Hilbert transform.

References

  1. Bourgain, J.: Pointwise ergodic theorems for arithmetic sets. Inst. Hautes Études Sci. Publ. Math. 69, 5–45 (1989). With an appendix by the author, Harry Furstenberg, Yitzhak Katznelson and Donald S. Ornstein

    Article  MathSciNet  MATH  Google Scholar 

  2. Carleson, L.: On convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  3. Do, Y., Muscalu, C., Thiele, C.: Variational estimates for paraproducts. Rev. Mat. Iberoam. (to appear)

  4. Fefferman, C.: Pointwise convergence of Fourier series. Ann. Math. (2) 98, 551–571 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  5. Grafakos, L., Martell, J.M., Soria, F.: Weighted norm inequalities for maximally modulated singular integral operators. Math. Ann. 331(2), 359–394 (2005). doi:10.1007/s00208-004-0586-2

    Article  MathSciNet  MATH  Google Scholar 

  6. Hunt, R.A.: On the convergence of Fourier series. In: Orthogonal Expansions and Their Continuous Analogues, Proc. Conf., Edwardsville, IL, 1967, pp. 235–255. Southern Illinois Univ. Press, Carbondale (1968)

    Google Scholar 

  7. Hunt, R.A., Young, W.S.: A weighted norm inequality for Fourier series. Bull. Am. Math. Soc. 80, 274–277 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jones, R.L., Seeger, A., Wright, J.: Strong variational and jump inequalities in harmonic analysis. Trans. Am. Math. Soc. 360(12), 6711–6742 (2008). doi:10.1090/S0002-9947-08-04538-8

    Article  MathSciNet  MATH  Google Scholar 

  9. Lacey, M., Thiele, C.: On Calderón’s conjecture. Ann. Math. (2) 149(2), 475–496 (1999). doi:10.2307/120971

    Article  MathSciNet  MATH  Google Scholar 

  10. Lacey, M.T., Thiele, C.: A proof of boundedness of the Carleson operator. Math. Res. Lett. 7(4), 361–370 (2000)

    MathSciNet  Google Scholar 

  11. Lépingle, D.: La variation d’ordre p des semi-martingales. Z. Wahrscheinlichkeitstheor. Verw. Geb. 36(4), 295–316 (1976)

    Article  MATH  Google Scholar 

  12. Li, X.: Personal communication

  13. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  14. Muscalu, C., Tao, T., Thiele, C.: The bi-Carleson operator. Geom. Funct. Anal. 16(1), 230–277 (2006). doi:10.1007/s00039-006-0553-z

    Article  MathSciNet  MATH  Google Scholar 

  15. Muscalu, C., Tao, T., Thiele, C.: L p estimates for the best, II: the Fourier case. Math. Ann. 329(3), 427–461 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Muscalu, C., Tao, T., Thiele, C.: A discrete model for the bi-Carleson operator. Geom. Funct. Anal. 12(6), 1324–1364 (2002). doi:10.1007/s00039-002-1324-0

    Article  MathSciNet  MATH  Google Scholar 

  17. Muscalu, C., Tao, T., Thiele, C.: L p estimates for the best, I: the Walsh case. Math. Ann. 329(3), 401–426 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Oberlin, R., Seeger, A., Tao, T., Thiele, C., Wright, J.: A variation norm Carleson theorem. J. Eur. Math. Soc. (to appear)

  19. Oberlin, R., Seeger, A., Tao, T., Thiele, C., Wright, J.: A variation norm Carleson theorem: Walsh case

  20. Pisier, G., Xu, Q.H.: The strong p-variation of martingales and orthogonal series. Probab. Theory Relat. Fields 77(4), 497–514 (1988). doi:10.1007/BF00959613

    Article  MathSciNet  MATH  Google Scholar 

  21. Rubio de Francia, J.L.: A Littlewood–Paley inequality for arbitrary intervals. Rev. Mat. Iberoam. 1(2), 1–14 (1985)

    Article  Google Scholar 

  22. Sjölin, P.: An inequality of Paley and convergence a.e. of Walsh–Fourier series. Ark. Mat. 7, 551–570 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  23. Thiele, C.: Time-frequency analysis in the discrete phase plane. PhD thesis, Yale (1995)

  24. Wittwer, J.: A sharp estimate on the norm of the martingale transform. Math. Res. Lett. 7(1), 1–12 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lacey.

Additional information

Communicated by Loukas Grafakos.

Research supported in part by grant NSF-DMS-0635607002.

Research supported in part by grant NSF-DMS 0968499 and a grant from the Simons Foundation (#229596 to Michael Lacey).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Do, Y., Lacey, M. Weighted Bounds for Variational Walsh–Fourier Series. J Fourier Anal Appl 18, 1318–1339 (2012). https://doi.org/10.1007/s00041-012-9231-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-012-9231-8

Keywords

Mathematics Subject Classification

Navigation