Journal of Fourier Analysis and Applications

, Volume 18, Issue 5, pp 893–914 | Cite as

Directional and Anisotropic Regularity and Irregularity Criteria in Triebel Wavelet Bases

Article

Abstract

Many natural mathematical objects, as well as many multi-dimensional signals and images from real physical problems, need to distinguish local directional behaviors (for tracking contours in image processing for example). Using some results of Jaffard and Triebel, we obtain criteria of directional and anisotropic regularities by decay conditions on Triebel anisotropic wavelet coefficients (resp. wavelet leaders).

Keywords

Directional regularity Anisotropic Hölder regularity Anisotropic Triebel wavelet basis Anisotropic wavelet coefficients Anisotropic wavelet leaders 

Mathematics Subject Classification

26A16 26B35 42C40 

Notes

Acknowledgements

Mourad Ben Slimane is thankful to Stéphane Jaffard for stimulating discussions. The authors are very grateful to the referees for their comments and remarks that greatly helped improve the presentation of the paper.

References

  1. 1.
    Arneodo, A., Audit, B., Decoster, N., Muzy, J.-F., Vaillant, C.: Wavelet-based multifractal formalism: applications to DNA sequences, satellite images of the cloud structure and stock market data. In: Bunde, A., Kropp, J., Schellnhuber, H.J. (eds.) The Science of Disasters, pp. 27–102. Springer, Berlin (2002) CrossRefGoogle Scholar
  2. 2.
    Ben Slimane, M.: Multifractal formalism and anisotropic self-similar functions. Math. Proc. Camb. Philos. Soc. 124, 329–363 (1998) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bonami, A., Estrade, A.: Anisotropic analysis of some gaussian models. J. Fourier Anal. Appl. 9, 215–236 (2003) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Calderón, A.P.: An atomic decomposition of distributions in parabolic \(\mathcal{H}^{p}\) spaces. Adv. Math. 25, 216–225 (1977) MATHCrossRefGoogle Scholar
  5. 5.
    Calderón, A.P., Torchinsky, A.: Parabolic maximal functions associated with a distribution. Adv. Math. 24, 101–171 (1977) MATHCrossRefGoogle Scholar
  6. 6.
    Candès, E., Donoho, D.: Ridgelets: A key to higher-dimensional intermittency? Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 357(1760), 2495–2509 (1999) MATHCrossRefGoogle Scholar
  7. 7.
    Clausel, M., Vedel, B.: Two optimality results about sample path properties of operator scaling gaussian random fields. Math. Nachr., to appear. hal-00582831, version 1. http://hal.archives-ouvertes.fr/hal-00582831/fr/, oai:hal.archives-ouvertes.fr:hal-00582831
  8. 8.
    Cohen, A.: Wavelet methods in numerical analysis. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook for Numerical Analysis. North-Holland, Amsterdam (2002) Google Scholar
  9. 9.
    Dahmen, W.: Wavelet and multiscale methods for operator equations. Acta Numer. 6, 55–228 (1997) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Devore, R.A.: Nonlinear approximation. Acta Numer. 7, 51–151 (1998) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Mathematical Notes, vol. 28. Princeton University Press/University of Tokyo Press, Princeton (1982) MATHGoogle Scholar
  13. 13.
    Jaffard, S.: Pointwise smoothness, two-microlocalization and wavelet coefficients. Publ. Mat. 35, 155–168 (1991) MathSciNetMATHGoogle Scholar
  14. 14.
    Jaffard, S.: Wavelet techniques in multifractal analysis. In: Lapidus, M., van Frankenhuijsen, M. (eds.) Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot. Proceedings of Symposia in Pure Mathematics, vol. 72, Part 2, pp. 91–152. AMS, Providence (2004) Google Scholar
  15. 15.
    Jaffard, S.: Pointwise and directional regularity of nonharmonic Fourier series. Appl. Comput. Harmon. Anal. 28, 251–266 (2010) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Lemarié, P.-G.: Projecteurs invariants, matrices de dilatation, ondelettes et analyses multi-résolutions. Rev. Mat. Iberoam. 10, 283–347 (1994) MATHCrossRefGoogle Scholar
  17. 17.
    Lemarié, P.-G., Meyer, Y.: Ondelettes et bases hilbertiennes. Rev. Mat. Iberoam. 1, 1–8 (1986) CrossRefGoogle Scholar
  18. 18.
    Mallat, S.: Applied mathematics meets signal processing. In: Chen, L.H.Y., et al. (eds.) Challenges for the 21st Century. Papers from the International Conference on Fundamental Sciences: Mathematics and Theoretical Physics (ICFS 2000), Singapore, March 13–17, 2000, pp. 138–161. Worl Scientific, Singapore (2001) CrossRefGoogle Scholar
  19. 19.
    Simoncelli, E.P., Freeman, W.T., Adelson, E.H., Heeger, D.J.: Shiftable multi-scale transforms [or “What’s wrong with orthonormal wavelets”]. IEEE Trans. Inf. Theory 38(2), 587–607 (1992). Special Issue on Wavelets MathSciNetCrossRefGoogle Scholar
  20. 20.
    Triebel, H.: Theory of Function Spaces III. Monographs in Mathematics, vol. 78. Birkhäuser, Basel (2006) MATHGoogle Scholar
  21. 21.
    Triebel, H.: Wavelet bases in anisotropic function spaces. In: Proc. Conf. “Function Spaces, Differential Operators and Nonlinear Analysis”, Milovy, 2004, pp. 370–387. Math. Inst. Acad. Sci., Prague (2005) Google Scholar
  22. 22.
    Watson, A.B.: The cortex transform: rapid computation of simulated neural images. Comput. Vis. Graph. Image Process. 39(3), 311–327 (1987) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Mathematics, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Institut de Mathématiques de JussieuParisFrance
  3. 3.Université Tunis El ManarTunisTunisia

Personalised recommendations