Skip to main content
Log in

Almost Everywhere Convergent Fourier Series

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We study some properties of the logconvex quasi-Banach space QA defined by Arias-de-Reyna and show several applications to convergence of Fourier series. In particular, we describe the Banach envelope of QA and prove that there exists a Lorentz space strictly bigger than the Antonov space in which the almost everywhere convergence of the Fourier series holds. We also give a necessary condition for a Banach rearrangement invariant space X to be contained in QA. As an application, we show that for some classes of Banach spaces there is no the largest Banach space in a given class which is contained in QA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Antonov, N.Y.: Convergence of Fourier series. East J. Approx. 2, 187–196 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Arias-de-Reyna, J.: Pointwise convergence of Fourier series. J. Lond. Math. Soc. 65, 139–153 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988)

    MATH  Google Scholar 

  4. Calderón, A.P.: Spaces between L 1 and L and the theorem of Marcinkiewicz. Stud. Math. 26, 273–299 (1966)

    MATH  Google Scholar 

  5. Carleson, L.: Convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carro, M.J., Martín, J.: Endpoint estimates from restricted rearrangement inequalities. Rev. Mat. Iberoam. 20(1), 131–150 (2004)

    Article  MATH  Google Scholar 

  7. Hunt, R.A.: On the convergence of Fourier series. In: Orthogonal Expansions and Their Continuous Analogues, Proc. Conf., Edwardsville, Ill, 1967, pp. 235–255. Southern Illinois Univ. Press, Carbondale (1968)

    Google Scholar 

  8. Kalton, N.J.: Convexity, type and the three space problem. Stud. Math. 69(3), 247–287 (1980/1981)

    MathSciNet  Google Scholar 

  9. Kalton, N.J.: Lattice Structures on Banach Spaces. Memoirs Amer. Math. Soc., vol. 103(493) (1993)

    Google Scholar 

  10. Kolmogorov, A.N.: Une série de Fourier-Lebesgue divergente presque partout. Fundam. Math. 4, 324–328 (1923)

    Google Scholar 

  11. Konyagin, S.V.: On divergence of trigonometric Fourier series everywhere. C. R. Acad. Sci. Paris, Ser. I Math. 329(8), 693–697 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Krein, S.G., Petunin, Ju.I., Semenov, E.M.: Interpolation of Linear Operators. Translations of Mathematical Monographs, vol. 54. American Mathematical Society, Providence (1982)

    Google Scholar 

  13. Luzin, N.: Sur la convergence des séries trigonométries de Fourier. C. R. Acad. Sci. Paris 156, 1655–1658 (1913)

    Google Scholar 

  14. Mastyło, M.: Lattice structures on some Banach spaces. Proc. Am. Math. Soc. (2011). doi:10.1090/S0002-9939-2011-11151-1. Article electronically published on 16 August 2011

    Google Scholar 

  15. Mitjagin, B.S.: An interpolation theorem for modular spaces. Mat. Sb. 66(108), 473–482 (1965) (Russian)

    MathSciNet  Google Scholar 

  16. Sjölin, P.: An inequality of Paley and convergence a.e. of Walsh-Fourier series. Ark. Math. 7, 551–570 (1969)

    Article  MATH  Google Scholar 

  17. Soria, F.: On an extrapolation theorem of Carleson-Sjölin with applications to a.e. convergence of Fourier series. Ark. Math. 94(3), 235–244 (1989)

    MathSciNet  MATH  Google Scholar 

  18. Zygmund, A.: Trigonometric Series, vols. I, II, 2nd edn. Cambridge University Press, New York (1959). Vol. I: xii+383 pp.; Vol. II: vii+354 pp.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Carro.

Additional information

Communicated by Tom Koerner.

To the memory of Nigel Kalton.

The first author was supported by MTM2010-14946, the second author by Committee of Scientific-Research, Poland, grant No. 201 385034 and the third author by MTM2009-08934.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carro, M.J., Mastyło, M. & Rodríguez-Piazza, L. Almost Everywhere Convergent Fourier Series. J Fourier Anal Appl 18, 266–286 (2012). https://doi.org/10.1007/s00041-011-9199-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-011-9199-9

Keywords

Mathematics Subject Classification (2000)

Navigation