Skip to main content
Log in

Crystallographic Haar Wavelets

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

(Γ,a)-crystallographic multiwavelets are a finite set of functions \(\Psi= \{ \psi ^{i}\}_{i=1}^{L}\), which generate an orthonormal basis, a Riesz basis or a Parseval frame for L 2(ℝd), under the action of a crystallographic group Γ, and powers of an appropriate expanding affine map a, taking the place of the translations and dilations in classical wavelets respectively. Associated crystallographic multiresolution analysis of multiplicity n ((Γ,a)-MRA) are defined in a natural way. A complete characterization of scaling function vectors which generates Haar type (Γ,a)-MRA’s in terms of (Γ,a)-multireptiles is given. Examples of (Γ,a)-MRA crystallographic wavelets of Haar type in dimension 2 and 3 are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldroubi, A., Cabrelli, C., Molter, U.: Wavelets on irregular grids with arbitrary dilation matrices, and frame atoms for L 2 (ℝd). Appl. Comput. Harmon. Anal. Special Issue on Frames II 119–140 (2004)

  2. Alperin, J.L., Bell, R.B.: Groups and Representations. Springer, New York (1995)

    Book  MATH  Google Scholar 

  3. Baggett, L., Carey, A., Moran, W., Ohring, P.: General existence theorems for orthonormal wavelets, an abstract approach. Publ. Res. Inst. Math. Sci. 31, 95–111 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blanchard, J.D., Krishtal, I.A.: Matricial filters and crystallographic composite dilation wavelets. Preprint (2009)

  5. Blanchard, J.D., Steffen, K.: Crystallographic Haar-type composite dilation wavelets. In: Cohen, J., Zayed, A.I. (eds.) Wavelets and Multiscale Analysis: Theory and Applications, pp. 83–108. Birkhäuser, Boston (2011)

    Chapter  Google Scholar 

  6. Candès, E.J., Donoho, D.L.: Ridgelets: a key to higher-dimensional intermittency. Philos. Trans. R. Soc. Lond. A 357, 2495–2509 (1999)

    Article  MATH  Google Scholar 

  7. Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with C2 singularities. Commun. Pure Appl. Math. 56, 219–266 (2004)

    Article  Google Scholar 

  8. Flaherty, T., Wang, Y.: Haar-type multiwavelet bases and self-affine multi-tiles. Asian J. Math. 3, 2 (1999)

    MathSciNet  Google Scholar 

  9. Gelbrich, G.: Crystallographic reptiles. Geom. Dedic. 51, 235–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gröchenig, K., Madych, W.R.: Multiresolution analysis, Haar bases, and self-similar sets. IEEE Trans. Inf. Theory 38, 556–568 (1994)

    Article  Google Scholar 

  11. Gröchenig, K., Haas, A., Raugi, A.: Self-Affine tilings with several tiles, I. Appl. Comput. Harmon. Anal. 7, 211–238 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grünbaum, B., Shephard, G.C.: Tilings and Patterns. Freeman, New York (1987)

    MATH  Google Scholar 

  13. Guo, K., Labate, D., Lim, W., Weiss, G., Wilson, E.: Wavelets with composite dilations. Electron. Res. Announc. Am. Math. Soc. 10, 78–87 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo, K., Labate, D., Lim, W., Weiss, G., Wilson, E.: Wavelets with composite dilations and their MRA properties. Appl. Comput. Harmon. Anal. 20(2), 202–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, K., Labate, D., Lim, W., Weiss, G., Wilson, E.: The theory of wavelets with composite dilations. In: Heil, C. (ed.) Harmonic Anal. and Appl., pp. 231–249. Birkhäuser, Boston (2006)

    Chapter  Google Scholar 

  16. Hiller, H.: Crystallography and cohomology of groups. Am. Math. Mon. 93(10), 765–779 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Krishtal, I.A., Robinson, B.D., Weiss, G.L., Wilson, E.N.: Some simple Haar-type wavelets in higher dimensions. J. Geom. Anal. 17(1), 87–96 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Lagarias, J., Wang, Y.: Self-affine tiles in ℝn. Adv. Math. 121(1), 21–49 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Le Pennec, E., Mallat, S.: Sparse geometric image representations with bandelets. IEEE Trans. Image Process. 14(4), 423–438 (2005)

    Article  MathSciNet  Google Scholar 

  21. Lomont, J.S.: Applications of Finite Groups. Dover, New York (1993)

    Google Scholar 

  22. MacArthur, J.: Compatible dilations and wavelets for the wallpaper groups. Preprint (2009)

  23. MacArthur, J., Taylor, K.: Wavelets with crystal symmetry shifts. Preprint (2009)

  24. Martin, G.E.: Transformation Geometry, an Introduction to Symmetry. Springer, New York (1997)

    Google Scholar 

  25. Moure, M.d.C.: A framework for the construction of self-replicating tilings. Discrete Comput. Geom. 42, 722–739 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Moure, M.d.C., Panzone, P.: Graph directed reptiles of ℝ2. Ric. Mat. LIII(2), 213–229 (2004)

    MathSciNet  Google Scholar 

  27. Potiopa, A.: A problem of Lagarias and Wang. Master thesis, Siedlce University, Siedlce, Poland (1997)

  28. Vince, A.: Periodicity, quasiperiodicity, and Bieberbach’s theorem on crystallographic groups. Am. Math. Mon. 104(1), 27–35 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, Y.: Self-affine tiles. In: Lau, K.S. (ed.) Proceedings of Advances in Wavelets, pp. 261–282. Springer, Singapore (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María del Carmen Moure.

Additional information

Communicated by Karlheinz Gröchenig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, A.L., Moure, M.d.C. Crystallographic Haar Wavelets. J Fourier Anal Appl 17, 1119–1137 (2011). https://doi.org/10.1007/s00041-011-9175-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-011-9175-4

Keywords

Mathematics Subject Classification (2000)

Navigation