Journal of Fourier Analysis and Applications

, Volume 17, Issue 4, pp 691–719 | Cite as

Real Interpolation of Generalized Besov-Hardy Spaces and Applications

  • Alexandre AlmeidaEmail author
  • António Caetano


In this paper we consider generalized Hardy spaces which include classical Hardy spaces and Hardy-Lorentz spaces as special cases. We give real interpolation results for such spaces. As applications, we solve an interpolation problem for Besov spaces of generalized smoothness and prove the boundedness of pseudodifferential operators acting both in these spaces and in the local Hardy spaces. For the latter spaces, we also obtain wavelet decompositions.


Generalized Hardy spaces Maximal functions Interpolation Besov spaces Pseudodifferential operators Wavelet decompositions 

Mathematics Subject Classification (2000)

46E35 42C40 42B30 46M35 35S05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abu-Shammala, W., Torchinsky, A.: The Hardy-Lorentz spaces H p,q(ℝn). Stud. Math. 182, 283–294 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Almeida, A.: Wavelet bases in generalized Besov spaces. J. Math. Anal. Appl. 304, 198–211 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Almeida, A.: On interpolation properties of generalized Besov spaces. In: Begehr, H.G.W., Çelebi, A.O., Gilbert, R.P. (eds.) Further Progress in Analysis, pp. 601–610. World Scientific, London (2009) CrossRefGoogle Scholar
  4. 4.
    Almeida, A., Caetano, A.M.: Generalized Hardy spaces. Acta Math. Sin. (Engl. Ser.) 26(9), 1673–1692 (2010) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bennet, C., Rudnick, K.: On Lorentz-Zygmund spaces. Diss. Math. 175 (1980), 67 pp. Google Scholar
  6. 6.
    Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988) zbMATHGoogle Scholar
  7. 7.
    Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Springer, Berlin (1976) zbMATHGoogle Scholar
  8. 8.
    Bui, H.-Q.: Weighted Besov and Triebel spaces: interpolation by the real method. Hiroshima Math. J. 12, 581–605 (1982) zbMATHMathSciNetGoogle Scholar
  9. 9.
    Bui, H.-Q.: On Besov, Hardy and Triebel spaces for 0<p≤1. Ark. Mat. 21, 169–184 (1983) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Caetano, A.M.: Subatomic representation of Bessel potential spaces modelled on Lorentz spaces. In: The J. A. Sampaio Martins Anniversary Volume, Textos Mat. Sér. B, vol. 34, pp. 37–47. Univ. Coimbra, Coimbra (2004) Google Scholar
  11. 11.
    Carro, M.J., Raposo, J.A., Soria, J.: Recent Developments in the Theory of Lorentz Spaces and Weighted Inequalities. Mem. Am. Math. Soc., vol. 187. AMS, Providence (2007) Google Scholar
  12. 12.
    Ching, C.-H.: Pseudodifferential operators with non-regular symbols. J. Differ. Equ. 11, 436–447 (1972) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Cobos, F., Fernandez, D.L.: Hardy-Sobolev Spaces and Besov Spaces with a Function Parameter. Lecture Notes in Math., vol. 1302, 158–170. Springer, Berlin (1988) Google Scholar
  14. 14.
    García-Cuerva, J.: Weighted H p spaces. Diss. Math. 162, 1–63 (1979) Google Scholar
  15. 15.
    Farkas, W., Leopold, H.-G.: Characterisations of function spaces of generalised smoothness. Ann. Mat. Pura Appl. 185(1–2), 1–62 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Fefferman, C., Stein, E.M.: H p spaces of several variables. Acta Math. 129, 137–193 (1972) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Fefferman, C., Riviere, N.M., Sagher, Y.: Interpolation between H p-spaces: the real method. Trans. Am. Math. Soc. 191, 75–81 (1974) zbMATHMathSciNetGoogle Scholar
  18. 18.
    Goldberg, D.: A local version of real Hardy spaces. Duke Math. J. 46, 27–42 (1979) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Haroske, D.D., Triebel, H.: Entropy numbers in weighted function spaces and eigenvalue distributions of some degenerate pseudodifferential operators, II. Math. Nachr. 168, 109–137 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Haroske, D.D., Triebel, H.: Wavelet bases and entropy numbers in weighted function spaces. Math. Nachr. 278(1–2), 108–132 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Hoepfner, G., Hounie, J.: Locally solvable vector fields and Hardy spaces. J. Funct. Anal. 247, 378–416 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators, III, IV. Springer, New York (1985) Google Scholar
  23. 23.
    Hounie, J., Kapp, R.: Pseudodifferential operators on local Hardy spaces. J. Fourier Anal. Appl. 15, 153–178 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Lu, S.: Four Lectures on Real H p Spaces. World Scientific, Singapore (1995) zbMATHCrossRefGoogle Scholar
  25. 25.
    Madych, W.R.: Anisotropic H p, real method and fractional Riesz potentials. Trans. Am. Math. Soc. 232, 255–263 (1977) zbMATHMathSciNetGoogle Scholar
  26. 26.
    Merucci, C.: Interpolation réelle avec fonction paramètre: réiteration et applications aux espaces Λp(φ). C. R. Acad. Sc. Paris, Sér. I 295, 427–430 (1982) zbMATHMathSciNetGoogle Scholar
  27. 27.
    Merucci, C.: Applications of Interpolation with a Function Parameter to Lorentz, Sobolev and Besov Spaces. Lect. Notes Math., vol. 1070. Springer, Berlin (1984), pp. 183–201 Google Scholar
  28. 28.
    Meyer, Y.: Wavelets and Operators. Cambridge University Press, Cambridge (1992) zbMATHGoogle Scholar
  29. 29.
    Nakai, E.: A generalization of Hardy spaces H p by using atoms. Acta Math. Sin. (Engl. Ser.) 24(8), 1243–1268 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Päivärinta, L.: Pseudodifferential operators in Hardy-Triebel-spaces. Z. Anal. Anwend. 2, 235–242 (1983) zbMATHGoogle Scholar
  31. 31.
    Päivärinta, L.: A note on continuity of pseudodifferential operators in Hardy spaces. Math. Scand. 55, 91–94 (1984) zbMATHMathSciNetGoogle Scholar
  32. 32.
    Päivärinta, L., Somersalo, E.: A generalization of the Calderón-Vaillancourt theorem to L p and h p. Math. Nachr. 138, 145–156 (1988) zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Persson, L.E.: Real interpolation between cross-sectional L p-spaces in quasi-Banach bundles. Technical Report 1, University of Luleå (1986) Google Scholar
  34. 34.
    Riviere, N.M., Sagher, Y.: Interpolation between L and H 1, the real method. J. Funct. Anal. 14, 401–409 (1973) zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Runst, T.: Pseudo-differential operators of the exotic class \(L^{0}_{1,1}\) in spaces of Besov and Triebel-Lizorkin type. Ann. Glob. Anal. Geom. 3, 13–28 (1985) zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton (1993) zbMATHGoogle Scholar
  37. 37.
    Taylor, M.E.: Partial Differential Equations II, Applied Mathematical Sciences, vol. 116. Springer, New York (1996) Google Scholar
  38. 38.
    Taylor, M.E.: Tools for PDE: Pseudodifferential Operators, Paradifferential Operators and Layer Potentials. Mathematical Surveys and Monographs, vol. 81. AMS, Providence (2000) zbMATHGoogle Scholar
  39. 39.
    Triebel, H.: Theory of Function Spaces. Monographs in Mathematics, vol. 78. Birkhäuser, Basel (1983) CrossRefGoogle Scholar
  40. 40.
    Triebel, H.: Theory of Function Spaces II. Monographs in Mathematics, vol. 84. Birkhäuser, Basel (1992) zbMATHCrossRefGoogle Scholar
  41. 41.
    Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. Barth, Heidelberg (1995) zbMATHGoogle Scholar
  42. 42.
    Triebel, H.: A note on wavelet bases in function spaces. In: Orlicz Centenary. Banach Center Publications, vol. 64, pp. 193–206 (2004) Google Scholar
  43. 43.
    Triebel, H.: Theory of Function Spaces III. Monographs in Mathematics, vol. 100. Birkhäuser, Basel (2006) zbMATHGoogle Scholar
  44. 44.
    Triebel, H.: Function Spaces and Wavelets on Domains, EMS Tracts in Mathematics, vol. 7. European Mathematical Society (EMS), Berlin (2008) zbMATHCrossRefGoogle Scholar
  45. 45.
    Triebel, H.: Wavelet bases in Lorentz and Zygmund spaces. Georgian Math. J. 15(2), 389–402 (2008) zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade de AveiroAveiroPortugal

Personalised recommendations