Commutators of Riesz Transforms Related to Schrödinger Operators
Article
First Online:
- 283 Downloads
- 34 Citations
Abstract
In this work we obtain boundedness on L p , for 1<p<∞, of commutators T b f=bTf−T(bf) where T is any of the Riesz transforms or their conjugates associated to the Schrödinger operator −Δ+V with V satisfying an appropriate reverse Hölder inequality. The class where b belongs is larger than the usual BMO. We also obtain a substitute result for p=∞, under a slightly stronger condition on b.
Keywords
Schrödinger operator BMO Commutators Riesz transformsMathematics Subject Classification (2000)
42B35 35J10Preview
Unable to display preview. Download preview PDF.
References
- 1.Bongioanni, B., Harboure, E., Salinas, O.: Riesz transforms related to Schrödinger operators acting on BMO type spaces. J. Math. Anal. Appl. 357(1), 115–131 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
- 2.Coifman, R.R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. Math. (2) 103(3), 611–635 (1976) CrossRefMathSciNetGoogle Scholar
- 3.Dziubański, J., Zienkiewicz, J.: Hardy spaces H 1 associated to Schrödinger operators with potential satisfying reverse Hölder inequality. Rev. Mat. Iberoam. 15(2), 279–296 (1999) zbMATHGoogle Scholar
- 4.Dziubański, J., Garrigós, G., Martínez, T., Torrea, J., Zienkiewicz, J.: BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality. Math. Z. 249(2), 329–356 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
- 5.Gehring, F.W.: The L p-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130, 265–277 (1973) zbMATHCrossRefMathSciNetGoogle Scholar
- 6.Guo, Z., Li, P., Peng, L.: L p boundedness of commutators of Riesz transforms associated to Schrödinger operator. J. Math. Anal. Appl. 341(1), 421–432 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
- 7.Harboure, E., Segovia, C., Torrea, J.L.: Boundedness of commutators of fractional and singular integrals for the extreme values of p. Ill. J. Math. 41(4), 676–700 (1997) MathSciNetGoogle Scholar
- 8.John, F., Nirenberg, L.: On functions of bounded mean oscillation. Commun. Pure Appl. Math. 14, 415–426 (1961) zbMATHCrossRefMathSciNetGoogle Scholar
- 9.Pérez, C.: Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function. J. Fourier Anal. Appl. 3(6), 743–756 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
- 10.Pradolini, G., Salinas, O.: Commutators of singular integrals on spaces of homogeneous type. Czechoslov. Math. J. 57(1), 75–93 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
- 11.Shen, Z.: L p estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Grenoble) 45(2), 513–546 (1995) zbMATHMathSciNetGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC 2010