Journal of Fourier Analysis and Applications

, Volume 16, Issue 4, pp 544–589 | Cite as

Sensitivity Analysis of Wave-equation Tomography: A Multi-scale Approach

  • Valeriy Brytik
  • Maarten V. de HoopEmail author
  • Mikko Salo


Earthquakes, viewed as passive sources, or controlled sources, like explosions, excite seismic body waves in the earth. One detects these waves at seismic stations distributed over the earth’s surface. Wave-equation tomography is derived from cross correlating, at each station, data simulated in a reference model with the observed data, for a (large) set of seismic events. The times corresponding with the maxima of these cross correlations replace the notion of residual travel times used as data in traditional tomography. Using first-order perturbation, we develop an analysis of the mapping from a wavespeed contrast (between the “true” and reference models) to these maxima. We develop a construction using curvelets, while establishing a connection with the geodesic X-ray transform. We then introduce the adjoint mapping, which defines the imaging of wavespeed variations from “finite-frequency travel time” residuals. The key underlying component is the construction of the Fréchet derivative of the solution to the seismic Cauchy initial value problem in wavespeed models of limited smoothness. The construction developed in this paper essentially clarifies how a wavespeed model is probed by the method of wave-equation tomography.

Tomography Wave equation Fréchet derivative Harmonic analysis 

Mathematics Subject Classification (2000)

35L05 35R05 35S50 35R30 86A15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bijwaard, H., Spakman, W., Engdahl, E.R.: Closing the gap between regional and global travel time tomography. J. Geophys. Res. 103, 30055–30078 (1998) CrossRefGoogle Scholar
  2. 2.
    Brytik, V., de Hoop, M.V., Smith, H.F., Uhlmann, G.: Parametrix construction following polarization for the elastic wave equation with stiffness of limited smoothness: A multi-scale approach. Preprint (2009) Google Scholar
  3. 3.
    Candès, E.J., Donoho, D.: New tight frames of curvelets and optimal representations of objects with piecewise-C 2 singularities. Commun. Pure Appl. Math. 57, 219–266 (2004) zbMATHCrossRefGoogle Scholar
  4. 4.
    Candès, E.J., Donoho, D.: Continuous curvelet transform: I. Resolution of the wavefront set. Appl. Comput. Harmon. Anal. 19, 162–197 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Candès, E.J., Donoho, D.: Continuous curvelet transform: II. Discretization and frames. Appl. Comput. Harmon. Anal. 19, 198–222 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dahlen, F.A., Hung, S.-H., Nolet, G.: Fréchet kernels for finite-frequency traveltimes—I. Theory. Geophys. J. Int. 141, 157–174 (2000) CrossRefGoogle Scholar
  7. 7.
    Dahlen, F.A., Nolet, G.: Comment on ‘On sensitivity kernels for ‘wave-equation’ transmission tomography’. Geophys. J. Int. 163, 949–951 (2005) CrossRefGoogle Scholar
  8. 8.
    De Hoop, M.V., Van der Hilst, R.D.: On sensitivity kernels for ‘wave-equation’ transmission tomography. Geophys. J. Int. 160, 621–633 (2005) CrossRefGoogle Scholar
  9. 9.
    De Hoop, M.V., Van der Hilst, R.D.: Reply to comment by F.A. Dahlen and G. Nolet on ‘On sensitivity kernels for ‘wave-equation’ transmission tomography’. Geophys. J. Int. 163, 952–955 (2005) CrossRefGoogle Scholar
  10. 10.
    De Hoop, M.V., Van der Hilst, R.D., Shen, P.: Wave-equation reflection tomography: Annihilators and sensitivity kernels. Geophys. J. Int. 167, 1332–1352 (2006) CrossRefGoogle Scholar
  11. 11.
    Evans, L.C.: Partial Differential Equations, vol. 19. Am. Math. Soc., Providence (2002). Google Scholar
  12. 12.
    Greenleaf, A., Uhlmann, G.: Estimates for singular Radon transforms and pseudodifferential operators with singular symbols. J. Funct. Anal. 89, 202–232 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kennett, B.L.N., Widiyantoro, S., Van der Hilst, R.D.: Joint seismic tomography for bulk-sound and shear wavespeed. J. Geophys. Res. 103, 12469–12493 (1998) CrossRefGoogle Scholar
  14. 14.
    Kingsbury, N.: Image processing with complex wavelets. Philos. Trans. R. Soc. Lond. A357, 2543–2560 (1999) Google Scholar
  15. 15.
    Kingsbury, N.: Complex wavelets for shift invariant analysis and filtering of signals. Appl. Comput. Harmon. Anal. 10, 234–253 (2002) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Loris, I., Nolet, G., Daubechies, I., Dahlen, F.A.: Tomographic inversion using l 1-norm regularization of wavelet coefficients. Geophys. J. Int. 170, 359–370 (2007) CrossRefGoogle Scholar
  17. 17.
    Luo, Y., Schuster, G.T.: Wave-equation travel time inversion. Geophysics 56, 645–653 (1991) CrossRefGoogle Scholar
  18. 18.
    Marquering, H., Nolet, G., Dahlen, F.A.: Three-dimensional waveform sensitivity kernels. Geophys. J. Int. 132, 521–534 (1998) CrossRefGoogle Scholar
  19. 19.
    Montelli, R., Nolet, G., Dahlen, F.A.: Comment on ‘Banana-doughnut kernels and mantle tomography’. Geophys. J. Int. 167, 1204–1210 (2006) CrossRefGoogle Scholar
  20. 20.
    Pestov, L., Uhlmann, G.: Two-dimensional compact simple Riemannian manifolds are boundary distance rigid. Ann. Math. 161, 1089–1106 (2005) CrossRefMathSciNetGoogle Scholar
  21. 21.
    Salo, M.: Stability for solutions of wave equations with C 1,1 coefficients. Inverse Probl. Imaging 1, 537–556 (2007) zbMATHMathSciNetGoogle Scholar
  22. 22.
    Sieminski, A., Liu, Q., Trampert, J., Tromp, J.: Finite-frequency sensitivity of body waves to anisotropy based upon adjoint methods. Geophys. J. Int. 171, 368–389 (2007) CrossRefGoogle Scholar
  23. 23.
    Sirgue, L., Pratt, R.: Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies. Geophysics 69, 231–248 (2004) CrossRefGoogle Scholar
  24. 24.
    Smith, H.F.: A parametrix construction for wave equations with C 1,1 coefficients. Ann. Inst. Fourier 48, 797–835 (1998) zbMATHGoogle Scholar
  25. 25.
    Smith, H.F.: Spectral cluster estimates for C 1,1 metrics. Am. J. Math. 128, 1069–1103 (2006) zbMATHCrossRefGoogle Scholar
  26. 26.
    Stolk, C.C.: On the modeling and inversion of seismic data. Ph.D. thesis, Utrecht University (2000) Google Scholar
  27. 27.
    Stolk, C.C., De Hoop, M.V.: Microlocal analysis of seismic inverse scattering in anisotropic, elastic media. Commun. Pure Appl. Math. 55, 261–301 (2002) zbMATHCrossRefGoogle Scholar
  28. 28.
    Stolk, C.C., De Hoop, M.V.: Seismic inverse scattering in the downward continuation approach. Wave Motion 43, 579–598 (2006) CrossRefMathSciNetGoogle Scholar
  29. 29.
    Su, W.-J., Dziewonski, A.M.: Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle. Phys. Earth Planet. Inter. 100, 135–156 (1997) CrossRefGoogle Scholar
  30. 30.
    Tataru, D.: Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation. Am. J. Math. 122, 349–376 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Tataru, D.: Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. II. Am. J. Math. 123, 385–423 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Tataru, D.: Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III. J. Am. Math. Soc. 15, 419–442 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Van der Hilst, R.D., De Hoop, M.V.: Banana-doughnut kernels and mantle tomography. Geophys. J. Int. 163, 956–961 (2005) CrossRefGoogle Scholar
  34. 34.
    Van der Hilst, R.D., De Hoop, M.V.: Reply to comment by R. Montelli, G. Nolet and F.A. Dahlen on ‘Banana-doughnut kernels and mantle tomography’. Geophys. J. Int. 167, 1211–1214 (2006) CrossRefGoogle Scholar
  35. 35.
    Van der Hilst, R.D., Widyantoro, S., Engdahl, E.R.: Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997) CrossRefGoogle Scholar
  36. 36.
    Woodward, M.J.: Wave-equation tomography. Geophysics 57, 12–26 (1992) CrossRefGoogle Scholar
  37. 37.
    Zhao, L., Jordan, T., Chapman, C.: Three-dimensional Fréchet differential kernels for seismic delay times. Geophys. J. Int. 141, 558–576 (2000) CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 2009

Authors and Affiliations

  • Valeriy Brytik
    • 1
  • Maarten V. de Hoop
    • 1
    Email author
  • Mikko Salo
    • 2
  1. 1.Center for Computational and Applied Mathematics, and Geo-Mathematical Imaging GroupPurdue UniversityWest LafayetteUSA
  2. 2.Department of Mathematics and Statistics/RNIUniversity of HelsinkiHelsinkiFinland

Personalised recommendations