Journal of Fourier Analysis and Applications

, Volume 15, Issue 5, pp 706–722 | Cite as

A New Scheme for the Tensor Representation

Open Access
Article

Abstract

The paper presents a new scheme for the representation of tensors which is well-suited for high-order tensors. The construction is based on a hierarchy of tensor product subspaces spanned by orthonormal bases. The underlying binary tree structure makes it possible to apply standard Linear Algebra tools for performing arithmetical operations and for the computation of data-sparse approximations. In particular, a truncation algorithm can be implemented which is based on the standard matrix singular value decomposition (SVD) method.

Keywords

Multilinear algebra Tensor representation Singular value decomposition 

Mathematics Subject Classification (2000)

15A69 

References

  1. 1.
    Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Chinnamsetty, S.R., Espig, M., Khoromskij, B.N., Hackbusch, W., Flad, H.-J.: Tensor product approximation with optimal rank in quantum chemistry. J. Chem. Phys. 127, 084110 (2007), 14 pages CrossRefGoogle Scholar
  3. 3.
    Dahmen, W., Prössdorf, S., Schneider, R.: Wavelet approximation methods for pseudodifferential equations II: Matrix compression and fast solution. Adv. Comput. Math. 1, 259–335 (1993) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Espig, M.: Approximation mit Elementartensorsummen. Dissertation, Universität Leipzig (2008) Google Scholar
  5. 5.
    Espig, M., Grasedyck, L., Hackbusch, W.: Black box low tensor rank approximation using fibre-crosses. Preprint 60, Max-Planck-Institut für Mathematik, Leipzig (2008) Google Scholar
  6. 6.
    Grasedyck, L.: Hierarchical singular value decomposition of tensors. Preprint 27, Max-Planck-Institut für Mathematik, Leipzig (2009) Google Scholar
  7. 7.
    Grasedyck, L., Hackbusch, W.: Construction and arithmetics of ℋ-matrices. Computing 70, 295–334 (2003) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hackbusch, W., Khoromskij, B.N.: Tensor-product approximation to operators and functions in high dimensions. J. Complex. 23, 697–714 (2007) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Khoromskij, B.N.: Structured rank-(r 1,…,r d) decomposition of function-related tensors in ℝd. Comp. Methods Appl. Math. 6, 194–220 (2006) MATHMathSciNetGoogle Scholar
  10. 10.
    Khoromskij, B.N., Khoromskaia, V.: Low rank Tucker-type tensor approximation to classical potentials. Cent. Eur. J. Math. 5(3), 1–18 (2007) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Tucker, L.R.: Implications of factor analysis of three-way matrices for measurement of change. In: Harris, C.W. (ed.) Problems in Measuring Change, pp. 122–137. University of Wisconsin Press, Madison (1963) Google Scholar

Copyright information

© Birkhäuser Boston 2009

Authors and Affiliations

  1. 1.MPI Mathematik in den NaturwissenschaftenLeipzigGermany

Personalised recommendations