Skip to main content
Log in

Representation of Operators in the Time-Frequency Domain and Generalized Gabor Multipliers

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Starting from a general operator representation in the time-frequency domain, this paper addresses the problem of approximating linear operators by operators that are diagonal or band-diagonal with respect to Gabor frames. A characterization of operators that can be realized as Gabor multipliers is given and necessary conditions for the existence of (Hilbert-Schmidt) optimal Gabor multiplier approximations are discussed and an efficient method for the calculation of an operator’s best approximation by a Gabor multiplier is derived. The spreading function of Gabor multipliers yields new error estimates for these approximations. Generalizations (multiple Gabor multipliers) are introduced for better approximation of overspread operators. The Riesz property of the projection operators involved in generalized Gabor multipliers is characterized, and a method for obtaining an operator’s best approximation by a multiple Gabor multiplier is suggested. Finally, it is shown that in certain situations, generalized Gabor multipliers reduce to a finite sum of regular Gabor multipliers with adapted windows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourouihiya, A.: The tensor product of frames. Sampl. Theory Signal Image Process. (STSIP) 7(1), 65–76 (2008)

    MathSciNet  Google Scholar 

  2. Balan, R.M., Rickard, S., Poor, H.V., Verdú, S.: Canonical time-frequency, time-scale, and frequency-scale representations of time-varying channels. J. Commun. Inf. Syst. 5(2), 197–226 (2005)

    MATH  Google Scholar 

  3. Balazs, P.: Hilbert-Schmidt operators and frames—classification, best approximation. Int. J. Wavelets Multiresolut. Inf. Process. 6(2), 315–330 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Balazs, P.: Matrix-representation of operators using frames. Sampl. Theory Signal Image Process. (STSIP) 7(1), 39–54 (2008)

    MathSciNet  Google Scholar 

  5. Bello, P.: Characterization of randomly time-variant linear channels. IEEE Trans. Commun. 11, 360–393 (1963)

    Article  Google Scholar 

  6. Benedetto, J.J., Pfander, G.E.: Frame expansions for Gabor multipliers. Appl. Comput. Harmon. Anal. 20(1), 26–40 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bölcskei, H., Koetter, R., Mallik, S.: Coding and modulation for underspread fading channels. In: IEEE International Symposium on Information Theory (ISIT) 2002, p. 358. ETH-Zürich, June 2002

  8. Carmona, R., Hwang, W., Torrésani, B.: Practical Time-Frequency Analysis: Continuous Wavelet and Gabor Transforms, with an Implementation in S. Wavelet Analysis and its Applications, vol. 9. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  9. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  10. Dolson, M.: The phase vocoder: a tutorial. Comput. Music. J. 10(4), 11–27 (1986)

    Google Scholar 

  11. Dörfler, M., Torrésani, B.: Spreading function representation of operators and Gabor multiplier approximation. In: Sampling Theory and Applications (SAMPTA’07), Thessaloniki, June 2007

  12. Dörfler, M., Torrésani, B.: Representation of operators by sampling in the time-frequency domain. In: Proceedings of SAMPTA09 (2009)

  13. Feichtinger, H., Zimmermann, G.: A Banach space of test functions for Gabor analysis. In: Feichtinger, H., Strohmer, T. (eds.) Gabor Analysis and Algorithms: Theory and Applications, pp. 123–170. Birkhäuser, Boston (1998). Chap. 3

    Google Scholar 

  14. Feichtinger, H.G.: On a new Segal algebra. Mon. Math. 92(4), 269–289 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  15. Feichtinger, H.G.: Spline type spaces in Gabor analysis. In: Zhou, D. (ed.) Wavelet Analysis: Twenty Years’ Developments. World Scientific, Singapore (2002)

    Google Scholar 

  16. Feichtinger, H.G., Hampejs, M., Kracher, G.: Approximation of matrices by Gabor multipliers. IEEE Signal Process. Lett. 11(11), 883–886 (2004)

    Article  Google Scholar 

  17. Feichtinger, H.G., Kozek, W.: Quantization of TF lattice-invariant operators on elementary LCA groups. In: Gabor Analysis and Algorithms, pp. 233–266. Birkhäuser, Boston (1998)

    Google Scholar 

  18. Feichtinger, H.G., Nowak, K.: A first survey of Gabor multipliers. In: Feichtinger, H.G., Strohmer, T. (eds.) Advances in Gabor Analysis. Birkhäuser, Boston (2002)

    Google Scholar 

  19. Feichtinger, H.G., Strohmer, T.: Gabor Analysis and Algorithms. Theory and Applications. Birkhäuser, Boston (1998)

    MATH  Google Scholar 

  20. Feichtinger, H.G., Strohmer, T.: Advances in Gabor Analysis. Birkhäuser, Boston (2003)

    MATH  Google Scholar 

  21. Flanagan, J., Golden, R.M.: Phase vocoder. Bell Syst. Tech. 45, 1493–1509 (1966)

    Google Scholar 

  22. Folland, G.: Harmonic Analysis in Phase Space. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  23. Führ, H.: Abstract Harmonic Analysis of Continuous Wavelet Transforms. Lecture Notes in Mathematics, vol. 1863. Springer, Berlin (2005)

    MATH  Google Scholar 

  24. Gel’fand, I.M., Vilenkin, N.Y.: Generalized Functions. Applications of Harmonic Analysis, vol. 4. Academic Press, New York (1964). Translated from the Russian by Amiel Feinstein

    MATH  Google Scholar 

  25. Gröchenig, K.: Foundations of Time-Frequency Analysis. Appl. Numer. Harmon. Anal. Birkhäuser, Boston (2001)

    MATH  Google Scholar 

  26. Gröchenig, K.: Uncertainty principles for time-frequency representations. In: Feichtinger, H., Strohmer, T. (eds.) Advances in Gabor Analysis, pp. 11–30. Birkhäuser, Boston (2003)

    Google Scholar 

  27. Grossmann, A., Morlet, J., Paul, T.: Transforms associated to square integrable group representations I: general results. J. Math. Phys. 26, 2473–2479 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  28. Grossmann, A., Morlet, J., Paul, T.: Transforms associated to square integrable group representations II: examples. Ann. Inst. Henri Poincaré 45, 293 (1986)

    MATH  MathSciNet  Google Scholar 

  29. Hlawatsch, F., Matz, G.: Linear time-frequency filters. In: Boashash, B. (ed.) Time-Frequency Signal Analysis and Processing: A Comprehensive Reference, pp. 466–475. Elsevier, Amsterdam (2003)

    Google Scholar 

  30. Kailath, T.: Measurements on time-variant communication channels. IEEE Trans. Inf. Theory 8(5), 229–236 (1962)

    Article  Google Scholar 

  31. Kennedy, R.: Fading Dispersive Communication Channels. Wiley, New York (1969)

    Google Scholar 

  32. Kozek, W.: Matched Weyl-Heisenberg expansions of nonstationary environments. PhD thesis, NuHAG, University of Vienna (1996)

  33. Kozek, W.: Adaptation of Weyl-Heisenberg frames to underspread environments. In: Feichtinger, H., Strohmer, T. (eds.) Gabor Analysis and Algorithms: Theory and Applications, pp. 323–352. Birkhäuser, Boston (1997)

    Google Scholar 

  34. Kozek, W.: On the transfer function calculus for underspread LTV channels. ISP 45(1), 219–223 (1997)

    Google Scholar 

  35. Kozek, W., Pfander, G.E.: Identification of operators with bandlimited symbols. SIAM J. Math. Anal. 37(3), 867–888 (2006)

    Article  MathSciNet  Google Scholar 

  36. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  37. Matz, G., Hlawatsch, F.: Time-frequency transfer function calculus (symbolic calculus) of linear time-varying systems (linear operators) based on a generalized underspread theory. J. Math. Phys. 39(8), 4041–4070 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  38. Matz, G., Hlawatsch, F.: Time-frequency characterization of random time-varying channels. In: Boashash, B. (ed.) Time Frequency Signal Analysis and Processing: A Comprehensive Reference, pp. 410–419. Elsevier, Amsterdam (2003)

    Google Scholar 

  39. Pfander, G.E., Walnut, D.F.: Operator identification and Feichtinger’s algebra. Sampl. Theory Signal Image Process. (STSIP) 5(2), 183–200 (2006)

    MATH  MathSciNet  Google Scholar 

  40. Schempp, W.: Harmonic Analysis on the Heisenberg Nilpotent Lie Group. Pitman Series, vol. 147. Wiley, New York (1986)

    MATH  Google Scholar 

  41. Zadeh, L.A.: Time-varying networks I. In: Proceedings of the IRE, vol. 49, pp. 1488–1502, October 1961

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Dörfler.

Additional information

Communicated by Karlheinz Gröchenig.

The first author has been supported by WWTF project MA07-025 and FWF grant T 384-N13.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dörfler, M., Torrésani, B. Representation of Operators in the Time-Frequency Domain and Generalized Gabor Multipliers. J Fourier Anal Appl 16, 261–293 (2010). https://doi.org/10.1007/s00041-009-9085-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-009-9085-x

Keywords

Mathematics Subject Classification (2000)

Navigation