Skip to main content
Log in

Sampling Theorem and Discrete Fourier Transform on the Riemann Sphere

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Using coherent-state techniques, we prove a sampling theorem for Majorana’s (holomorphic) functions on the Riemann sphere and we provide an exact reconstruction formula as a convolution product of N samples and a given reconstruction kernel (a sinc-type function). We also discuss the effect of over- and under-sampling. Sample points are roots of unity, a fact which allows explicit inversion formulas for resolution and overlapping kernel operators through the theory of Circulant Matrices and Rectangular Fourier Matrices. The case of band-limited functions on the Riemann sphere, with spins up to J, is also considered. The connection with the standard Euler angle picture, in terms of spherical harmonics, is established through a discrete Bargmann transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maslen, D.: Efficient computation of Fourier transforms on compact groups. J. Fourier Analysis Appl. 4, 19–52 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Maslen, D.: Sampling of functions and sections for compact groups. Mod. Signal Process. 46, 247–280 (2003)

    MathSciNet  Google Scholar 

  3. Chirikjian, G.S., Kyatkin, A.: Engineering Applications of Noncommutative Harmonic Analysis. CRC Press, Boca Raton (2001)

    MATH  Google Scholar 

  4. Cooley, J.W., Tukey, J.W.: An algorithm for machine calculation of complex Fourier series. Math. Comp. 19, 297–301 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kyatkin, A., Chirikjian, G.S.: Algorithms for fast convolutions on motion groups. Appl. Comput. Harmon. Analysis 9, 220–241 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kyatkin, A., Chirikjian, G.S.: Computation of robot configuration and workspaces via the Fourier transform on the discrete motion-group. Int. J. Robotics Res. 18, 601–615 (1999)

    Article  Google Scholar 

  7. Diaconis, P., Rockmore, D.: Efficient Computation of the Fourier Transform on Finite Groups. J. Am. Math. Soc. 3, 297–332 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Driscoll, J.R., Healy, D.: Computing Fourier transforms and convolutions on the 2-sphere. In: Proc. 34th IEEE FOCS, pp. 344–349 (1989)

  9. Driscoll, J.R., Healy, D.: Adv. Appl. Math. 15, 202–250 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Maslen, D., Rockmore, D.: Generalized FFTs – A survey of some recent results. In: Finkelstein, L., Kantor, W. (eds.), Proc. 1995 DIMACS Workshop in Groups and Computation. Dimacs Series in Disc. Math. and Comp. Sci, Vol. 28, pp. 183–238

  11. Rockmore, D.: Some applications of generalized FFTs. In: Proc. 1995 DIMACS Workshop in Groups and Computation, Finkelstein, L., Kantor, W. (eds.), Dimacs Series in Disc. Math. and Comp. Sci, Vol. 28, pp. 329–370

  12. Healy, D. Jr., Rockmore, D., Kostelec, P., Moore, S.: FFTs for the 2-sphere – Improvements and variations. J. Fourier Analysis and Appl. 9, 341–385 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Majorana, E.: Atomi orientati in campo magnetico variabile. Nuovo Cimento 9, 43–50 (1932)

    Article  MATH  Google Scholar 

  14. Dennis, M.R.: Canonical representation of spherical functions: Sylvester’s theorem, Maxwell’s multipoles and Majorana’s sphere. J. Phys. A37, 9487–9500 (2004)

    Article  MathSciNet  Google Scholar 

  15. Klauder, J.R., Skagerstam, B.-S.: Coherent States: Applications in Physics and Mathematical Physics. World Scientific, Singapore (1985)

    MATH  Google Scholar 

  16. Perelomov, A.: Generalized Coherent States and Their Applications. Springer, Berlin (1986)

    MATH  Google Scholar 

  17. Bargmann, V.: On the Hilbert space of analytic functions and an associated integral transform. Comm. Pure Appl. Math. 14, 187 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ali, S.T., Antoine, J.P., Gazeau, J.P.: Coherent States, Wavelets and Their Generalizations. Springer, Berlin (2000)

    MATH  Google Scholar 

  19. Führ, H.: Abstract Harmonic Analysis of Continuous Wavelet Transforms. Springer, Berlin (2005)

    MATH  Google Scholar 

  20. Davis, P.J.: Circulant Matrices. Chelsea Publishing, NY (1994)

    MATH  Google Scholar 

  21. Holschneider, M.: Wavelets: An Analysis Tool. Oxford University Press, London (1998)

    MATH  Google Scholar 

  22. Calixto, M., Guerrero, J.: Wavelet transform on the circle and the real line: a unified group-theoretical treatment. Appl. Comput. Harmon. Anal. 21, 204–229 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ben-Israel, A., Greville, T.N.E.: Generalized Inverses. Springer, Berlin (2003)

    MATH  Google Scholar 

  24. Wigner, E.P.: Group Theory and Its Applications to the Quantum Mechanics of Atomic Spectra. Academic Press, New York (1959)

    Google Scholar 

  25. Sury, B.: Sum of the reciprocals of the binomial coefficients. Eur. J. Comb. 14, 351–353 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Grossmann, A., Morlet, J., Paul, T.: Transforms associated to square integrable group representations I. General results. J. Math. Phys. 26, 2473–2479 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Calixto.

Additional information

Communicated by Thomas Strohmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calixto, M., Guerrero, J. & Sánchez-Monreal, J.C. Sampling Theorem and Discrete Fourier Transform on the Riemann Sphere. J Fourier Anal Appl 14, 538–567 (2008). https://doi.org/10.1007/s00041-008-9027-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-008-9027-z

Keywords

Mathematics Subject Classification (2000)

Navigation