Skip to main content
Log in

The Role of Frame Force in Quantum Detection

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

A general method is given to solve tight frame optimization problems, borrowing notions from classical mechanics. In this article, we focus on a quantum detection problem, where the goal is to construct a tight frame that minimizes an error term, which in quantum physics has the interpretation of the probability of a detection error. The method converts the frame problem into a set of ordinary differential equations using concepts from classical mechanics and orthogonal group techniques. The minimum energy solutions of the differential equations are proven to correspond to the tight frames that minimize the error term. Because of this perspective, several numerical methods become available to compute the tight frames. Beyond the applications of quantum detection in quantum mechanics, solutions to this frame optimization problem can be viewed as a generalization of classical matched filtering solutions. As such, the methods we develop are a generalization of fundamental detection techniques in radar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acernese, F., Barone, F., De Rosa, R., Eleuteri, A., Pardi, S., Russo, G., Milano, L.: Dynamic matched filter technique for gravitational wave detection from coalescing binary systems. Classical Quantum Gravity 21(5) (2004) (electronic)

  2. Acernese, F., Barone, F., De Rosa, R., Eleuteri, A., Pardi, S., Russo, G., Milano, L.: Dynamic matched filters for gravitational wave detection. Classical Quantum Gravity 21(20) (2004) (electronic)

  3. Altschuler, E.L., Pérez-Garrido, A.: Global minimum for Thomson’s problem of charges on a sphere. Phys. Rev. E (3) 71(4) (2005)

  4. Ashby, N., Brittin, W.E.: Thomson’s problem. Amer. J. Phys. 54, 776–777 (1986)

    Article  Google Scholar 

  5. Benedetto, J.J., Fickus, M.: Finite normalized tight frames. Adv. Comput. Math. 18(2–4), 357–385 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Benedetto, J.J., Kebo, A.: Matched filtering and quantum detection. Preprint

  7. Benedetto, J.J., Walnut, D.F.: Gabor frames for L 2 and related spaces. In: Wavelets, Mathematics and Applications. Stud. Adv. Math., pp. 97–162. CRC, Boca Raton (1994)

    Google Scholar 

  8. Benedetto, J.J., Powell, A., Yilmaz, Ö.: Second order Sigma-Delta quantization of finite frame expansions. Appl. Comput. Harmon. Anal. 20, 128–148 (2006)

    MathSciNet  Google Scholar 

  9. Benedetto, J.J., Powell, A., Yilmaz, Ö.: Sigma-Delta quantization and finite frames. IEEE Trans. Inform. Theory 52(5), 1990–2005 (2006)

    Article  MathSciNet  Google Scholar 

  10. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Berberian, S.K.: Notes on Spectral Theory. Van Nostrand Mathematical Studies, vol. 5. D. Van Nostrand, Princeton (1966)

    MATH  Google Scholar 

  12. Brandt, H.E.: Positive operator valued measure in quantum information processing. Amer. J. Phys. 67(5), 434–439 (1999)

    Article  MathSciNet  Google Scholar 

  13. Brandt, H.E.: Quantum measurement with a positive operator-valued measure. J. Opt. B Quantum Semiclass. Opt. 5(3), S266–S270 (2003). Wigner Centennial (Pécs, 2002)

    Article  MathSciNet  Google Scholar 

  14. Casazza, P.G., Kovačević, J.: Equal-norm tight frames with erasures. Adv. Comput. Math. 18(2–4), 387–430 (2003). Frames

    Article  MATH  MathSciNet  Google Scholar 

  15. Casazza, P.G., Kutyniok, G.: A generalization of Gram-Schmidt orthogonalization generating all Parseval frames. Adv. Comp. Math. (2008, to appear)

  16. Czaja, W.: Remarks on Naimark’s duality. Proc. Amer. Math. Soc. 136(3), 867–871 (2008). Electronic

    Article  MATH  MathSciNet  Google Scholar 

  17. Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992)

    MATH  Google Scholar 

  18. Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27(5), 1271–1283 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. Davis, C.: Geometric approach to a dilation theorem. Linear Algebra Appl. 18(1), 33–43 (1977)

    Article  MATH  Google Scholar 

  20. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 72, 341–366 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  21. Eldar, Y.C.: Least-squares inner product shaping. Linear Algebra Appl. 348, 153–174 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Eldar, Y.C.: Mixed-quantum-state detection with inconclusive results. Phys. Rev. A (3) 67 (2003)

  23. Eldar, Y.C.: A semidefinite programming approach to optimal unambiguous discrimination of quantum states. IEEE Trans. Inform. Theory 49(2), 446–456 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Eldar, Y.C.: von Neumann measurement is optimal for detecting linearly independent 0 quantum states. Phys. Rev. A (3) 68(5) (2003)

  25. Eldar, Y.C., Bölcskei, H.: Geometrically uniform frames. IEEE Trans. Inform. Theory 49(4), 993–1006 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Eldar, Y.C., Forney, Jr., G.D.: On quantum detection and the square-root measurement. IEEE Trans. Inform. Theory 47(3), 858–872 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Eldar, Y.C., Forney, Jr., G.D.: Optimal tight frames and quantum measurement. IEEE Trans. Inform. Theory 48(3), 599–610 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Eldar, Y.C., Oppenheim, A.V.: Quantum signal processing. Signal Processing Mag. 19, 12–32 (2002)

    Article  Google Scholar 

  29. Eldar, Y.C., Oppenheim, A.V., Egnor, D.: Orthogonal and projected orthogonal matched filter detection. Signal Processing 84, 677–693 (2004)

    Article  Google Scholar 

  30. Eldar, Y.C., Megretski, A., Verghese, G.C.: Designing optimal quantum detectors via semidefinite programming. IEEE Trans. Inform. Theory 49(4), 1007–1012 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Forney, Jr., G.D.: Geometrically uniform codes. IEEE Trans. Inform. Theory 37(5), 1241–1260 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  32. Goyal, V.K., Kovačević, J., Vetterli, M.: Multiple description transform coding: Robustness to erasures using tight frame expansions. In: Proc. IEEE Int. Symp. Inform. Th., p. 408, Cambridge, MA (1998)

  33. Goyal, V.K., Kovačević, J., Vetterli, M.: Quantized frame expansions as source-channel codes for erasure channels. In: Proc. IEEE Data Compression Conference, pp. 326–335 (1999)

  34. Goyal, V.K., Kovačević, J., Kelner, J.A.: Quantized frame expansions with erasures. Appl. Comput. Harmon. Anal. 10(3), 203–233 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  35. Griffiths, D.: Introduction to Quantum Mechanics. Prentice-Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  36. Gudkov, V., Nussinov, S.: Graph equivalence and characterization via a continuous evolution of a physical analog (2002). arXiv, cond-mat/0209112

  37. Gudkov, V., Johnson, J.E., Nussinov, S.: Approaches to network classification (2002). arXiv, cond-mat/0209111

  38. Gudkov, V., Nussinov, S., Nussinov, Z.: A novel approach applied to the largest clique problem (2002). arXiv, cond-mat/0209419

  39. Hausladen, P., Wootters, W.K.: A “pretty good” measurement for distinguishing quantum states. J. Modern Opt. 41(12), 2385–2390 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  40. Helstrom, C.W.: Quantum detection and estimation theory. J. Statist. Phys. 1, 231–252 (1969)

    Article  MathSciNet  Google Scholar 

  41. Hochwald, B.M., Marzetta, T.L., Richardson, T.J., Sweldens, W., Urbanke, R.L.: Systematic design of unitary space-time constellations. IEEE Trans. Inform. Theory 46(6), 1962–1973 (2000)

    Article  MATH  Google Scholar 

  42. Holmes, R.B., Paulsen, V.I.: Optimal frames for erasures. Linear Algebra Appl. 377, 31–51 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  43. Kebo, A.: Numerical computation of optimal quantum frames. Preprint

  44. Klauder, J.R.: The design of radar signals having both high range resolution and high velocity resolution. Bell System Technical J. 39, 809–820 (1960)

    Google Scholar 

  45. Klauder, J.R.: Optical coherence before and after Wiener. In: Proceedings of the Norbert Wiener Centenary Congress, 1994 (East Lansing, MI, 1994) (Providence, RI). Proc. Symp. Appl. Math. 52, Amer. Math. Soc. 195–211 (1997)

  46. Klauder, J.R., Price, A.C., Darlington, S., Albersheim, W.J.: The theory and design of chirp radars. Bell System Technical J. 39, 745–808 (1960)

    Google Scholar 

  47. Marion, J.B., Thornton, S.T.: Classical Dynamics of Particles and Systems, 4th ed. Harcourt Brace & Company, San Diego (1995)

    Google Scholar 

  48. Naimark, M.A.: Spectral functions of a symmetric operator. Izv. Akad. Nauk SSSR, Ser. Mat. 4, 277–318 (1940)

    Google Scholar 

  49. Nussinov, S., Nussinov, Z.: A novel approach to complex problems (2002). arXiv, cond-mat/0209155

  50. Peres, A., Terno, D.R.: Optimal distinction between non-orthogonal quantum states. J. Phys. A 31(34), 7105–7111 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  51. Peres, A., Wootters, W.K.: Optimal detection of quantum information. Phys. Rev. Lett. 66, 1119–1122 (1991)

    Article  Google Scholar 

  52. Rossmann, W.: Lie Groups. Oxford Graduate Texts in Mathematics, vol. 5. Oxford University Press, Oxford (2002). An introduction through linear groups

    MATH  Google Scholar 

  53. Rudin, W.: Functional Analysis, 2nd edn. International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1991)

    MATH  Google Scholar 

  54. Smale, S., Zhou, D.: Shannon sampling and function reconstruction from point values. Bull. Amer. Math. Soc. (N.S.) 41(3), 279–305 (2004) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  55. Strohmer, T., Heath, Jr., R.W.: Grassmannian frames with applications to coding and communication Appl. Comput. Harmon. Anal. 14(3), 257–275 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  56. Tadmor, E., Nezzar, S., Vese, L.: A multiscale image representation using hierarchical (BV,L 2) decompositions. Multiscale Model. Simul. 2(4), 554–579 (2004) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  57. Tucker, J.R., Feldman, M.J.: Quantum detection at millimeter wavelengths. Rev. Modern Phys. 57(4), 1055–1113 (1985)

    Article  Google Scholar 

  58. Vale, R., Waldron, S.: Tight frames and their symmetries. Constr. Approx. 21(1), 83–112 (2005)

    MATH  MathSciNet  Google Scholar 

  59. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955). Translated by Robert T. Beyer

    MATH  Google Scholar 

  60. Will, C.M., Yunes, N.: Testing alternative theories of gravity using LISA. Classical and Quantum Gravity 21, 4367 (2004)

    Article  MATH  Google Scholar 

  61. Young, R.M.: An Introduction to Nonharmonic Fourier Series, 1st edn. Academic Press Inc., San Diego (2001)

    MATH  Google Scholar 

  62. Yuen, H.P., Kennedy, R.S., Lax, M.: Optimum testing of multiple hypotheses in quantum detection theory. IEEE Trans. Information Theory IT-21, 125–134 (1975)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Benedetto.

Additional information

Communicated by Hans G. Feichtinger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benedetto, J.J., Kebo, A. The Role of Frame Force in Quantum Detection. J Fourier Anal Appl 14, 443–474 (2008). https://doi.org/10.1007/s00041-008-9017-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-008-9017-1

Keywords

Mathematics Subject Classification (2000)

Navigation