Skip to main content
Log in

Wavelets from the Loop Scheme

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Anewwavelet-based geometric mesh compression algorithm was developed recently in the area of computer graphics by Khodakovsky, Schröder, and Sweldens in their interesting article [23]. The new wavelets used in [23] were designed from the Loop scheme by using ideas and methods of [26, 27], where orthogonal wavelets with exponential decay and pre-wavelets with compact support were constructed. The wavelets have the same smoothness order as that of the basis function of the Loop scheme around the regular vertices which has a continuous second derivative; the wavelets also have smaller supports than those wavelets obtained by constructions in [26, 27] or any other compactly supported biorthogonal wavelets derived from the Loop scheme (e.g., [11, 12]). Hence, the wavelets used in [23] have a good time frequency localization. This leads to a very efficient geometric mesh compression algorithm as proposed in [23]. As a result, the algorithm in [23] outperforms several available geometric mesh compression schemes used in the area of computer graphics. However, it remains open whether the shifts and dilations of the wavelets form a Riesz basis of L2(ℝ2). Riesz property plays an important role in any wavelet-based compression algorithm and is critical for the stability of any wavelet-based numerical algorithms. We confirm here that the shifts and dilations of the wavelets used in [23] for the regular mesh, as expected, do indeed form a Riesz basis of L2(ℝ2) by applying the more general theory established in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuowei Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, B., Shen, Z. Wavelets from the Loop Scheme. J Fourier Anal Appl 11, 615–637 (2005). https://doi.org/10.1007/s00041-005-5013-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-005-5013-x

Keywords

Navigation