Skip to main content
Log in

Aggressive behavior across ant lineages: importance, quantification, and associations with trait evolution

  • Review Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Aggressive behavior, or lack thereof, is vital to the success of a social insect colony. A diversity of aggressive behaviors are exhibited in varying degrees by workers across ant species. To better understand this suite of behaviors, we review the extensive literature around ant aggression in order to assess the importance of aggression to the success of ant lineages, the ways in which aggression has been quantified in the literature, and potential correlations between aggression and other key functional traits. Our new contributions to this body of literature include an interaction framework for contextualizing the variation of behaviors, a new suggested scale for quantifying aggressive behaviors, and finally an investigation into traits that are correlated with aggression across ant lineages. Based on our phylogenetic comparative analyses, we find a negative correlation between eye length and aggression and that body size, worker polymorphism, and potentially participation in mutualisms with plants and other insects are evolutionarily linked to an increase in aggressive behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the supplementary materials.

References

  • Abbot P (2022) Defense in social insects: diversity, division of labor, and evolution. Annu Rev Entomol 67:407–436

    Article  PubMed  Google Scholar 

  • Adams ES (1990) Boundary disputes in the territorial ant Azteca trigona: effects of asymmetries in colony size. Anim Behav 39(2):321–328

    Article  Google Scholar 

  • Adams ES (1994) Territory defense by the ant Azteca trigona: maintenance of an arboreal ant mosaic. Oecologia 97(2):202–208

    Article  PubMed  Google Scholar 

  • Adams ES (2016) Territoriality in ants (Hymenoptera: Formicidae): a review. Myrmecol News 23:101–118

    Google Scholar 

  • Alaux C, Sinha S, Hasadsri L, Hunt GJ, Guzmán-Novoa E, DeGrandi-Hoffman G, Uribe-Rubio JL, Southey BR, Rodriguez-Zas S, Robinson GE (2009) Honey bee aggression supports a link betweengene regulation and behavioral evolution. Proc Natl Acad Sci 106(36):15400–15405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alekseyenko OV, Chan YB, Li R, Kravitz EA (2013) Single dopaminergic neurons that modulate aggression in Drosophila. Proc Natl Acad Sci 110(15):6151–6156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amador-Vargas S, Gronenberg W, Wcislo WT, Mueller U (2015) Specialization and group size: brain and behavioural correlates of colony size in ants lacking morphological castes. Proceed R Soc B Biol Sci 282(1801):20142502

    Article  Google Scholar 

  • Andersen AN, Patel AD (1994) Meat ants as dominant members of Australian ant communities: an experimental test of their influence on the foraging success and forager abundance of other species. Oecologia 98(1):15–24

    Article  CAS  PubMed  Google Scholar 

  • Arnott G, Elwood RW (2008) Information gathering and decision making about resource value in animal contests. Anim Behav 76(3):529–542

    Article  Google Scholar 

  • Banks CJ (1962) Effects of the ant Lasius niger (L.) on insects preying on small populations of Aphis fabae Scop on bean plants. Ann Appl Biol 50(4):669–679

    Article  Google Scholar 

  • Barbieri RF, Grangier J, Lester PJ (2013) Arrival sequence and diet mediate interspecific competition in an ant community. Insectes Soc 60(4):463–473

    Article  Google Scholar 

  • Barden P, Grimaldi DA (2016) Adaptive radiation in socially advanced stem-group ants from the Cretaceous. Curr Biol 26(4):515–521

    Article  CAS  PubMed  Google Scholar 

  • Batchelor TP, Briffa M (2011) Fight tactics in wood ants: individuals in smaller groups fight harder but die faster. Proceed R Soc B Biol Sci 278(1722):3243–3250

    Article  Google Scholar 

  • Batra SW (1978) Aggression, territoriality, mating and nest aggregation of some solitary bees (Hymenoptera: Halictidae, Megachilidae, Colletidae, Anthophoridae). J Kansas Entomol Soc 51:547–559

    Google Scholar 

  • Beattie AJ (1985) The evolutionary ecology of ant-plant mutualisms. Cambridge University Press

    Book  Google Scholar 

  • Bengston SE, Dornhaus A (2014) Latitudinal variation in behaviors linked to risk tolerance is driven by nest-site competition and spatial distribution in the ant Temnothorax rugatulus. Behav Ecol Sociobiol 69(8):1265–1274

    Article  Google Scholar 

  • Blanchard BD, Moreau CS (2017) Defensive traits exhibit an evolutionary trade-off and drive diversification in ants. Evolution 71(2):315–328

    Article  PubMed  Google Scholar 

  • Blüthgen N, Stork E, N. and Fiedler, K. (2004) Bottom-up control and co-occurrence in complex communities: honeydew and nectar determine a rainforest ant mosaic. Oikos 106(2):344–358

    Article  Google Scholar 

  • Bourke AF, Heinze J (1994) The ecology of communal breeding: the case of multiple queen leptothoracine ants. Philos Trans R Soc Lond Ser B Biol Sci 345(1314):359–372

    Article  Google Scholar 

  • Brown ES (1959) Immature nutfall of coconuts in the Solomon Islands. II.—changes in ant populations, and their relation to vegetation. Bull Entomol Res 50(3):523–558

    Article  Google Scholar 

  • Burchill AT, Moreau CS (2016) Colony size evolution in ants: macroevolutionary trends. Insectes Soc 63(2):291–298

    Article  Google Scholar 

  • Carroll CR, Janzen DH (1973) Ecology of foraging by ants. Annu Rev Ecol Syst 4(1):231–257

    Article  Google Scholar 

  • Cerdá X, Retana J, Cros S (1997) Thermal disruption of transitive hierarchies in Mediterranean ant communities. J Anim Ecol 66:363–374

    Article  Google Scholar 

  • Cerdá X, Arnan X, Retana J (2013) Is competition a significant hallmark of ant (Hymenoptera: Formicidae) ecology. Myrmecol News 18(1):131–147

    Google Scholar 

  • Davidson D, McKey D (1993) The evolutionary ecology of symbiotic ant-plant relationships. J Hymenopt Res 2:13–83

    Google Scholar 

  • Detrain C, Pasteels JM (1992) Caste polyethism and collective defense in the ant, Pbeidole pallidula: the outcome of quantitative differences in recruitment. Behav Ecol Sociobiol 29(6):405–412

    Article  Google Scholar 

  • Dial KP, Greene E, Irschick DJ (2008) Allometry of behavior. Trends Ecol Evol 23(7):394–401

    Article  PubMed  Google Scholar 

  • Dimarco RD, Farji-Brener AG, Premoli AC (2010) Dear enemy phenomenon in the leaf-cutting ant Acromyrmex lobicornis: behavioral and genetic evidence. Behav Ecol 21(2):304–310

    Article  Google Scholar 

  • Edmunds M (1974) Defense in animals: a survey of anti-predator defenses. Longman Publishing Group

    Google Scholar 

  • Ettershank G, Ettershank JA (1982) Ritualised fighting in the meat ant Iridomyrmex purpureus (Smith) (Hymenoptera: Formicidae). Aust J Entomol 21(2):97–102

    Article  Google Scholar 

  • Felsenstein J (2012) A comparative method for both discrete and continuous characters using the threshold model. Am Nat 179(2):145–156

    Article  PubMed  Google Scholar 

  • Fisher JB (1954) Evolution and bird sociality. Evol Process. https://doi.org/10.1016/0003-3472(89)90125-5

    Article  Google Scholar 

  • Fluker SS, Beardsley JW (1970) Sympatric associations of three ants: Iridomyrmex humilis, Pheidole megacephala, and Anoplolepis longipes in Hawaii. Ann Entomol Soc Am 63(5):1290–1296

    Article  Google Scholar 

  • Gibb H, Hochuli DF (2003) Colonisation by a dominant ant facilitated by anthropogenic disturbance: effects on ant assemblage composition, biomass and resource use. Oikos 103(3):469–478

    Article  Google Scholar 

  • Gibb H, Hochuli DF (2004) Removal experiment reveals limited effects of a behaviorally dominant species on ant assemblages. Ecology 85(3):648–657

    Article  Google Scholar 

  • Gibb H, Parr CL (2013) Does structural complexity determine the morphology of assemblages? an experimental test on three continents. PLoS ONE 8(5):e64005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibb H, Stoklosa J, Warton DI, Brown AM, Andrew NR, Cunningham SA (2015) Does morphology predict trophic position and habitat use of ant species and assemblages? Oecologia 177:519–531

    Article  CAS  PubMed  Google Scholar 

  • Giraud T, Pedersen JS, Keller L (2002) Evolution of supercolonies: the Argentine ants of southern Europe. Proc Natl Acad Sci 99(9):6075–6079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon DM (1989) Ants distinguish neighbors from strangers. Oecologia 81(2):198–200

    Article  Google Scholar 

  • Gordon DM (2019) The ecology of collective behavior in ants. Annu Rev Entomol 64:35–50

    Article  CAS  PubMed  Google Scholar 

  • Grether GF, Peiman KS, Tobias JA, Robinson BW (2017) Causes and consequences of behavioral interference between species. Trends Ecol Evol 32(10):760–772

    Article  PubMed  Google Scholar 

  • Grover CD, Kay AD, Monson JA, Marsh TC, Holway DA (2007) Linking nutrition and behavioural dominance: carbohydrate scarcity limits aggression and activity in Argentine ants. Proceed R Soc B Biol Sci 274(1628):2951–2957

    Article  Google Scholar 

  • Guerrieri FJ, Nehring V, Jørgensen CG, Nielsen J, Galizia CG, d’Ettorre P (2009) Ants recognize foes and not friends. Proceed R Soc B Biol Sci 276(1666):2461–2468

    Article  CAS  Google Scholar 

  • Guilherme DR, Souza JLP, Franklin E, Pequeno PACL, Das Chagas AC, Baccaro FB (2019) Can environmental complexity predict functional trait composition of ground dwelling ant assemblages? a test across the Amazon Basin. Acta Oecol 99:103434

    Article  Google Scholar 

  • Haight KL (2006) Defensiveness of the fire ant, Solenopsis invicta, is increased during colony rafting. Insectes Soc 53(1):32–36

    Article  Google Scholar 

  • Heinze J, Foitzik S, Hippert A, Hölldobler B (1996) Apparent dear-enemy phenomenon and environment-based recognition cues in the ant Leptothorax nylanderi. Ethology 102(3):510–522

    Article  Google Scholar 

  • Heinze J, Trindl A, Seifert B, Yamauchi K (2005) Evolution of male morphology in the ant genus Cardiocondyla. Mol Phylogenet Evol 37(1):278–288

    Article  CAS  PubMed  Google Scholar 

  • Hölldobler B (1979) Territoriality in Ants American. Philos Soc 123(4):211–218

    Google Scholar 

  • Hölldobler B (1981) Foraging and spatiotemporal territories in the honey ant Myrmecocystus mimicus Wheeler (Hymenoptera: Formicidae). Behav Ecol Sociobiol 9(4):301–314

    Article  Google Scholar 

  • Hölldobler B (1983) Territorial behavior in the green tree ant Oecophylla smaragdina. Biotropica 15:241–250

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press

    Book  Google Scholar 

  • Holway DA, Suarez AV, Case TJ (1998) Loss of intraspecific aggression in the success of a widespread invasive social insect. Science 282(5390):949–952

    Article  CAS  PubMed  Google Scholar 

  • Hoover KM, Bubak AN, Law IJ, Yaeger JD, Renner KJ, Swallow JG, Greene MJ (2016) The organization of societal conflicts by pavement ants Tetramorium caespitum: an agent-based model of amine-mediated decision making. Current Zoology 62(3):277–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howe J, Schiøtt M, Boomsma JJ (2016) Tachykinin expression levels correlate with caste-specific aggression in workers of the leaf-cutting ant Acromyrmex echinatior. Front Ecol Evol 4:55

    Article  Google Scholar 

  • Huber R, Kravitz EA (2010) Aggression: towards an integration of gene, brain and behaviour. Soc Behav Genes Ecol Evol. https://doi.org/10.1017/CBO9780511781360.015

    Article  Google Scholar 

  • Jackson DA (1984) Ant distribution patterns in a Cameroonian cocoa plantation: investigation of the ant mosaic hypothesis. Oecologia 62(3):318–324

    Article  CAS  PubMed  Google Scholar 

  • Janzen DH (1966) Coevolution of mutualism between ants and acacias in Central America. Evolution 20(3):249–275

    Article  PubMed  Google Scholar 

  • Janzen DH (1967) Interaction of the bull’s-horn acacia (Acacia cornigera L.) with an ant inhabitant (Pseudomyrmex ferrugineus F. Smith) in eastern Mexico. Kansas Univ Sci Bull 47:315–558

    Google Scholar 

  • Janzen DH (1975) Pseudomyrmex nigropilosa: a parasite of a mutualism. Science 188(4191):936–937

    Article  CAS  PubMed  Google Scholar 

  • Jelley C, Barden P (2021) Vision-linked traits associated with antenna size and foraging ecology across ants. Insect Syst Divers 5(5):9

    Article  Google Scholar 

  • Jongepier E, Foitzik S (2016) Ant recognition cue diversity is higher in the presence of slavemaker ants. Behav Ecol 27(1):304–311

    Article  Google Scholar 

  • Judd TM (1998) Defensive behavior of colonies of the paper wasp, Polistes fuscatus, against vertebrate predators over the colony cycle. Insectes Soc 45(2):197–208

    Article  Google Scholar 

  • Jutsum AR, Saunders TS, Cherrett JM (1979) Intraspecific aggression is the leaf-cutting ant Acromyrmex octospinosus. Anim Behav 27:839–844

    Article  Google Scholar 

  • Kamhi JF, Nunn K, Robson SK, Traniello JF (2015) Polymsyorphism and division of labour in a socially complex ant: neuromodulation of aggression in the Australian weaver ant, Oecophylla smaragdina. Proceed R Soc B Biol Sci 282(1811):20150704

    Article  Google Scholar 

  • Kinomura K, Yamauchi K (1987) Fighting and mating behaviors of dimorphic males in the ant: Cardiocondyla wroughtoni. J Ethology 5(1):75–81

    Article  Google Scholar 

  • Kronauer DJ (2020) Army ants: nature’s ultimate social hunters. Harvard University Press

    Book  Google Scholar 

  • Kugler C (1979) Evolution of the sting apparatus in the myrmicine ants. Evolution. https://doi.org/10.1111/j.1558-5646.1979.tb04668.x

    Article  PubMed  Google Scholar 

  • Lach, L., Parr, C. and Abbott, K. eds., 2010. Ant ecology. Oxford university press.

  • Lang JM, Benbow ME (2013) Species Interaction and Competition. Nat Educ Knowl 4:8

    Google Scholar 

  • Langen TA, Tripet F, Nonacs P (2000) The red and the black: habituation and the dear enemy phenomenon in two desert Pheidole ants. Behav Ecol Sociobiol 48(4):285–292

    Article  Google Scholar 

  • Larsen J, Fouks B, Bos N, d’Ettorre P, Nehring V (2014) Variation in nestmate recognition ability among polymorphic leaf-cutting ant workers. J Insect Physiol 70:59–66

    Article  CAS  PubMed  Google Scholar 

  • London KB, Jeanne RL (2003) Effects of colony size and stage of development on defense response by the swarm-founding wasp Polybia occidentalis. Behav Ecol Sociobiol 54(6):539–546

    Article  Google Scholar 

  • Lumsden CJ, Hölldobler B (1983) Ritualized combat and intercolony communication in ants. J Theor Biol 100(1):81–98

    Article  Google Scholar 

  • Mabelis AA (1978) Distribution of red wood ants (Formica polyctena Först.) over the foraging area of their nest, and the influence of a conspecific neighbouring population. Neth J Zool 29(2):221–232

    Article  Google Scholar 

  • Manfredini F, Brown MJ, Toth AL (2018) Candidate genes for cooperation and aggression in the social wasp Polistes dominula. J Comp Physiol A 204(5):449–463

    Article  CAS  Google Scholar 

  • McGlynn TP, Parra EL (2016) Mechanisms of carbohydrate-fuelled ecological dominance in a tropical rainforest canopy-foraging ant. Ecol Entomol 41(2):226–230

    Article  Google Scholar 

  • Medeiros FN, Lopes LE, Moutinho PR, Oliveira PS, Hölldobler B (1992) Functional polygyny, agonistic interactions and reproductive dominance in the neotropical ant Odontomachus chelifer (Hymenoptera, Formicidae, Ponerinae). Ethology 91(2):134–146

    Article  Google Scholar 

  • Miura T, Maekawa K (2020) The making of the defensive caste: physiology, development, and evolution of the soldier differentiation in termites. Evol Dev 22(6):425–437

    Article  PubMed  Google Scholar 

  • Modlmeier AP, Foitzik S (2011) Productivity increases with variation in aggression among group members in Temnothorax ants. Behav Ecol 22(5):1026–1032

    Article  Google Scholar 

  • Morrison LW (1996) Community organization in a recently assembled fauna: the case of Polynesian ants. Oecologia 107(2):243–256

    Article  PubMed  Google Scholar 

  • Nelsen MP, Ree RH, Moreau CS (2018) Ant–plant interactions evolved through increasing interdependence. Proc Natl Acad Sci 115(48):12253–12258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newey PS, Robson SK, Crozier RH (2010) Weaver ants Oecophylla smaragdina encounter nasty neighbors rather than dear enemies. Ecology 91(8):2366–2372

    Article  PubMed  Google Scholar 

  • Nowbahari E, Fénéron R, Malherbe MC (1999) Effect of body size on aggression in the ant, Cataglyphis niger (Hymenoptera; Formicidae). Aggr Behav 25(5):369–379

    Article  Google Scholar 

  • Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Princeton University Press

    Google Scholar 

  • Pagel M (1994) Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proceed R Soc of Lond Ser B Biol Sci 255(1342):37–45

    Article  Google Scholar 

  • Pfeiffer M, Linsenmair KE (2001) Territoriality in the Malaysian giant ant Camponotus gigas (Hymenoptera/Formicidae). J Ethol 19(2):75–85

    Article  Google Scholar 

  • Pfennig DW, Reeve HK (1989) Neighbor recognition and context-dependent aggression in a solitary wasp, Sphecius speciosus (Hymenoptera: Sphecidae). Ethology 80(1–4):1–18

    Article  Google Scholar 

  • Plowes NJ, Ramsch K, Middendorf M, Hölldobler B (2014) An empirically based simulation of group foraging in the harvesting ant, Messor pergandei. J Theor Biol 340:186–198

    Article  PubMed  Google Scholar 

  • Porter SD, Jorgensen CD (1981) Foragers of the harvester ant, Pogonomyrmex owyheei: a disposable caste? Behav Ecol Sociobiol 9:247–256

    Article  Google Scholar 

  • Püffel F, Pouget A, Liu X, Zuber M, van de Kamp T, Roces F, Labonte D (2021) Morphological determinants of bite force capacity in insects: a biomechanical analysis of polymorphic leaf-cutter ants. J R Soc Interface 18(182):20210424

    Article  PubMed  PubMed Central  Google Scholar 

  • Rehan SM, Richards MH (2013) Reproductive aggression and nestmate recognition in a subsocial bee. Anim Behav 85(4):733–741

    Article  Google Scholar 

  • Revell LJ (2014) Ancestral character estimation under the threshold model from quantitative genetics. Evolution 68(3):743–759

    Article  PubMed  Google Scholar 

  • Rissing SW, Pollock GB (1987) Queen aggression, pleometrotic advantage and brood raiding in the ant Veromessor pergandei (Hymenoptera: Formicidae). Anim Behav 35(4):975–981

    Article  Google Scholar 

  • Robinson SD, Deuis JR, Touchard A, Keramidas A, Mueller A, Schroeder CI, Barassé V, Walker AA, Brinkwirth N, Jami S, Bonnafé E (2023) Ant venoms contain vertebrate-selective pain-causing sodium channel toxins. Nat Commun 14(1):2977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rockwood LL (1973) Distribution, density, and dispersion of two species of Atta (Hymenoptera: Formicidae) in Guanacaste province, Costa Rica. J Anim Ecol 42:803–817

    Article  Google Scholar 

  • Roulston TH, Buczkowski G, Silverman J (2003) Nestmate discrimination in ants: effect of bioassay on aggressive behavior. Insectes Soc 50(2):151–159

    Article  Google Scholar 

  • Rubin BE, Moreau CS (2016) Comparative genomics reveals convergent rates of evolution in ant–plant mutualisms. Nat Commun 7(1):1–11

    Article  Google Scholar 

  • Rudolph KP, Palmer TM (2013) Carbohydrate as fuel for foraging, resource defense and colony growth–a long-term experiment with the plant-ant Crematogaster nigriceps. Biotropica 45(5):620–627

    Article  Google Scholar 

  • Ruiz-Guajardo JC, Grossenbacher DL, Grosberg RK, Palmer TM, Stanton ML (2017) Impacts of worker density in colony-level aggression, expansion, and survival of the acacia-ant Crematogaster mimosae. Ecol Monogr 87(2):246–259

    Article  Google Scholar 

  • Salzemann A, Jaffe K (1991) Polyéthisme et défense de la société chez la fourmi champignonniste Atta laevigata (Fr. Smith). Insectes Soc 38(2):149–159

    Article  Google Scholar 

  • Sanada-Morimura S, Minai M, Yokoyama M, Hirota T, Satoh T, Obara Y (2003) Encounter-induced hostility to neighbors in the ant Pristomyrmex pungens. Behav Ecol 14(5):713–718

    Article  Google Scholar 

  • Sano K, Bannon N, Greene MJ (2018) Pavement ant workers (Tetramorium caespitum) assess cues coded in cuticular hydrocarbons to recognize conspecific and heterospecific non-nestmate ants. J Insect Behav 31:186–199

    Article  Google Scholar 

  • Segev U, Burkert L, Feldmeyer B, Foitzik S (2017) Pace-of-life in a social insect: behavioral syndromes in ants shift along a climatic gradient. Behav Ecol 28(4):1149–1159

    Article  Google Scholar 

  • Shingleton AW, Stern DL, Foster WA (2005) The origin of a mutualism: a morphological trait promoting the evolution of ant-aphid mutualisms. Evolution 59(4):921–926

    PubMed  PubMed Central  Google Scholar 

  • Smith JM (1974) The theory of games and the evolution of animal conflicts. J Theor Biol 47(1):209–221

    Article  CAS  PubMed  Google Scholar 

  • Smith JM (1982) Evolution and the theory of games. Cambridge University Press

    Book  Google Scholar 

  • Sosiak CE, Barden P (2021) Multidimensional trait morphology predicts ecology across ant lineages. Funct Ecol 35(1):139–152

    Article  CAS  Google Scholar 

  • Stuart AM (1969) Social behavior and communication. Biol Termit 1:193–232

    Article  Google Scholar 

  • Stuble KL, Juric I, Cerda X, Sanders NJ (2017) Dominance hierarchies are a dominant paradigm in ant ecology (Hymenoptera: Formicidae), but should they be? and what is a dominance hierarchy anyways. Myrmecol News 24:71–81

    Google Scholar 

  • Suarez AV, Tsutsui ND, Holway DA, Case TJ (1999) Behavioral and genetic differentiation between native and introduced populations of the Argentine ant. Biol Invasions 1(1):43–53

    Article  Google Scholar 

  • Sundström LF, Petersson E, Höjesjö J, Johnsson JI, Järvi T (2004) Hatchery selection promotes boldness in newly hatched brown trout (Salmo trutta): implications for dominance. Behav Ecol 15(2):192–198

    Article  Google Scholar 

  • Tanner CJ (2008) Aggressive group behaviour in the ant Formica xerophila is coordinated by direct nestmate contact. Anim Behav 76(4):1335–1341

    Article  Google Scholar 

  • Temeles EJ (1994) The role of neighbours in territorial systems: when are they dear enemies’? Anim Behav 47(2):339–350

    Article  Google Scholar 

  • Thomas ML, Payne-Makrisâ CM, Suarez AV, Tsutsui ND, Holway DA (2007) Contact between supercolonies elevates aggression in Argentine ants. Insectes Soc 54(3):225–233

    Article  Google Scholar 

  • Thompson FJ, Donaldson L, Johnstone RA, Field J, Cant MA (2014) Dominant aggression as a deterrent signal in paper wasps. Behav Ecol 25(4):706–715

    Article  Google Scholar 

  • Thorne BL (1982) Termite-termite interactions: workers as an agonistic caste. Psyche 89(1–2):133–150

    Article  Google Scholar 

  • Tibbetts EA, Lindsay R (2008) Visual signals of status and rival assessment in Polistes dominulus paper wasps. Biol Let 4(3):237–239

    Article  Google Scholar 

  • Traniello JF (1981) Enemy deterrence in the recruitment strategy of a termite: soldier organized foraging in Nasutitermes costalis. Proc Natl Acad Sci 78(3):1976–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsutsui ND, Suarez AV (2003) The colony structure and population biology of invasive ants. Conserv Biol 17(1):48–58

    Article  Google Scholar 

  • van Wilgenburg E, van Lieshout E, Elgar MA (2005) Conflict resolution strategies in meat ants (Iridomyrmex purpureus): ritualised displays versus lethal fighting. Behaviour 142:701–716

    Article  Google Scholar 

  • van Wilgenburg E, Ryan D, Morrison P, Marriott PJ, Elgar MA (2006) Nest-and colony-mate recognition in polydomous colonies of meat ants (Iridomyrmex purpureus). Naturwissenschaften 93(7):309–314

    Article  CAS  PubMed  Google Scholar 

  • Vepsäläinen K, Pisarski B (1982) January. assembly of island ant communities. Ann Zool Fenn 19:327–335

    Google Scholar 

  • Vieira MC, Peixoto PE (2013) Winners and losers: a meta-analysis of functional determinants of fighting ability in arthropod contests. Funct Ecol 27(2):305–313

    Article  Google Scholar 

  • Ward PS (1991) Phylogenetic analysis of pseudomyrmecine ants associated with domatia bearing plants. Ant-plant interactions. Oxford University Press, Oxford, pp 335–352

    Google Scholar 

  • Ward PS, Downie DA (2005) The ant subfamily Pseudomyrmecinae (Hymenoptera: Formicidae): phylogeny and evolution of big-eyed arboreal ants. Syst Entomol 30(2):310–335

    Article  Google Scholar 

  • Warren RJ, King JR, Bradford MA (2020) Disentangling resource acquisition from interspecific behavioral aggression to understand the ecological dominance of a common, widespread temperate forest ant. Insectes Soc 67(1):179–187

    Article  Google Scholar 

  • Way MJ (1963) Mutualism between ants and honeydew-producing Homoptera. Annu Rev Entomol 8(1):307–344

    Article  Google Scholar 

  • Weiser MD, Kaspari M (2006) Ecological morphospace of New World ants. Ecological Entomology 31(2):131–142

    Article  Google Scholar 

  • Wilson EO, Hölldobler B (1985) Caste-specific techniques of defense in the polymorphic ant Pheidole embolopyx (Hymenoptera: Formicidae). Insectes Soc 32(1):3–22

    Article  Google Scholar 

  • Wittman SE, O’Dowd DJ, Green PT (2018) Carbohydrate supply drives colony size, aggression, and impacts of an invasive ant. Ecosphere 9(9):e02403

    Article  Google Scholar 

  • Yamauchi K, Asano Y, Lautenschläger B, Trindl A, Heinze J (2005) A new type of male dimorphism with ergatoid and short-winged males in Cardiocondyla cf. kagutsuchi. Insectes Soc 52:274–281

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Liam Revell for insight and guidance on using the Threshold Model. We thank Dr. Brian Danforth and Dr. Michael Sheehan for feedback on the project. We thank Megan Barkdull, Leland Graber, Annette Kang, Dr. Manuela Ramalho, and Sylvana Ross for helpful feedback during the writing process. We thank the CUIC for the use of specimens and camera. We thank Dr. Jason Dombrowski and Loren Jones for training and assistance with the CUIC camera. We thank Dr. Brian Fisher and Antweb for access to specimen images. Part of this work was supported by NSF DBI grant 2210800 to CSM. We thank the reviewers and editor for helping improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jelley.

Ethics declarations

Conflict of interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jelley, C., Moreau, C.S. Aggressive behavior across ant lineages: importance, quantification, and associations with trait evolution. Insect. Soc. 70, 393–403 (2023). https://doi.org/10.1007/s00040-023-00931-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-023-00931-6

Keywords

Navigation