Abstract
Understanding a haplodiploid species’ social structure and quantifying relatedness among individuals are both important when designing sampling schemes or identifying potential biases in population genetics studies. However, it is not always possible to accurately identify social structure of study species in the field, or to collect large numbers of individuals from a single colony to estimate relatedness with methods that rely on accurate estimation of allele frequencies. Here, we assessed the utility of allele-frequency-free inference of relationships in haplodiploid ant colonies, while using limited sample sizes. Using genome-wide single-nucleotide polymorphism data, we measured intracolony relatedness and kinship estimates consistent with full-sister relationships among workers in three Nearctic species: Camponotus herculeanus, C. laevissimus, and C. modoc. Notably, the allele-frequency-free inference of relationships clearly demonstrated these full-sister relationships without ambiguity; this result suggests the utility of these methods for identifying closely related individuals in population genetics studies of haplodiploid organisms. We additionally performed a literature review of relatedness estimates in the subfamily Formicinae both as a compiled resource and to place our results in context within this larger clade of ants. Our results suggestive of Camponotus colonies founded by a lone singly mated queen are consistent with previously published relatedness estimates in the genus Camponotus that have generally shown high intracolony relatedness.
Similar content being viewed by others
Data availability
All raw sequencing data is at NCBI’s SRA repository with an accession under BioProject # PRJNA874018. Mitochondrial DNA sequences are uploaded to NCBI GenBank (OQ325048-OQ325100). Code used for analyses in this project is available on GithHub: github.com/jdmanthey/camponotus_relatedness_revised.
References
Akre RD, Hansen LD, Myhre EA (1994) Colony size and polygyny in carpenter ants (Hymenoptera: Formicidae). J Kansas Entomol Soc 67:1–9
Azevedo-Silva M (2017) Genetic diversity of ants (Hymenoptera: Formicidae) at colony and population scales: a comparative study of Camponotus renggeri and C. rufipes in cerrado vegetation. Thesis. Universidade Estadual de Campinas Instituto de Biologia
Bargum K, Sundström L (2007) Multiple breeders, breeder shifts and inclusive fitness returns in an ant. Proc R Soc B Biol Sci 274:1547–1551
Bargum K, Helanterä H, Sundström L (2007) Genetic population structure, queen supersedure and social polymorphism in a social Hymenoptera. J Evol Biol 20:1351–1360
Bernasconi C, Maeder A, Cherix D, Pamilo P (2005) Diversity and genetic structure of the wood ant Formica lugubris in unmanaged forests. In Annales Zoologici Fennici, pp. 189–199
Beye M, Neumann P, Chapuisat M, Pamilo P, Moritz R (1998) Nestmate recognition and the genetic relatedness of nests in the ant Formica pratensis. Behav Ecol Sociobiol 43:67–72
Blaimer BB, Brady SG, Schultz TR, Lloyd MW, Fisher BL, Ward PS (2015) Phylogenomic methods outperform traditional multi-locus approaches in resolving deep evolutionary history: a case study of formicine ants. BMC Evol Biol 15:1–14
Boomsma JJ (2007) Kin selection versus sexual selection: why the ends do not meet. Curr Biol 17:R673–R683
Boomsma JJ (2009) Lifetime monogamy and the evolution of eusociality. Philos Trans R Soc B: Biol Sci 364:3191–3207
Boomsma J, Van der Have T (1998) Queen mating and paternity variation in the ant Lasius niger. Mol Ecol 7:1709–1718
Boomsma J, Brouwer A, Van Loon A (1990) A new polygynousLasius species (Hymenoptera: Formicidae) from central Europe. Insectes Soc 37:363–375
Boomsma J, Wright P, Brouwer A (1993) Social structure in the ant Lasius flavus: multi-queen nests or multi-nest mounds? Ecol Entomol 18:47–53
Brown WD, Keller L (2000) Colony sex ratios vary with queen number but not relatedness asymmetry in the ant Formica exsecta. Proc R Soc Lond Ser B Biol Sci 267:1751–1757
Brunner E, Trindl A, Falk KH, Heinze J, D’Ettorre P (2005) Reproductiv conflict in social insects: male production by workers in a slave-making ant. Evolution 59:2480–2482
Bushnell B (2014) BBMap: a fast, accurate, splice-aware aligner. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA US
Chapuisat M, Keller L (1999) Extended family structure in the ant Formica paralugubris: the role of the breeding system. Behav Ecol Sociobiol 46:405–412
Chapuisat M, Goudet J, Keller L (1997) Microsatellites reveal high population viscosity and limited dispersal in the ant Formica paralugubris. Evolution 51:475–482
Chapuisat M, Bocherens S, Rosset H (2004) Variable queen number in ant colonies: no impact on queen turnover, inbreeding, and population genetic differentiation in the ant Formica selysi. Evolution 58:1064–1072
Chernenko A, Vidal-Garcia M, Helanterä H, Sundström L (2013) Colony take-over and brood survival in temporary social parasites of the ant genus Formica. Behav Ecol Sociobiol 67:727–735
Cronin A, Chifflet-Belle P, Fédérici P, Doums C (2016) High inter-colonial variation in worker nestmate relatedness and diverse social structure in a desert ant from Mongolia. Insectes Soc 63:87–98
Danecek P et al (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158
DeHeer C, Herbers J (2004) Population genetics of the socially polymorphic ant Formica podzolica. Insectes Soc 51:309–316
Drescher J, Blüthgen N, Feldhaar H (2007) Population structure and intraspecific aggression in the invasive ant species Anoplolepis gracilipes in Malaysian Borneo. Mol Ecol 16:1453–1465
Drescher J, Blüthgen N, Schmitt T, Bühler J, Feldhaar H (2010) Societies drifting apart? Behavioural, genetic and chemical differentiation between supercolonies in the yellow crazy ant Anoplolepis gracilipes. PLoS ONE 5:e13581
Eaton L, Medel R (1994) Allozyme variation and genetic relatedness in a population of Camponotus chilensis (Hymenoptera, Formicidae) in Chile. Rev Chil Hist Nat 67:157–161
Elias M, Rosengren R, Sundström L (2005) Seasonal polydomy and unicoloniality in a polygynous population of the red wood ant Formica truncorum. Behav Ecol Sociobiol 57:339–349
Eriksson TH 2018. Geographical variation in social structure, morphology, and genetics of the new world honey ant Myrmecocystus mendax. [PhD dissertation). Arizona State University, Tempe, AZ.
Eriksson T, Hölldobler B, Taylor J, Gadau J (2019) Intraspecific variation in colony founding behavior and social organization in the honey ant Myrmecocystus mendax. Insectes Soc 66:283–297
Eyer P-A et al (2018) Supercolonial structure of invasive populations of the tawny crazy ant Nylanderia fulva in the US. BMC Evol Biol 18:1–14
Eyer PA, Espinoza EM, Blumenfeld AJ, Vargo EL (2020) The underdog invader: Breeding system and colony genetic structure of the dark rover ant (Brachymyrmex patagonicus Mayr). Ecol Evol 10:493–505
Fernández-Escudero I, Pamilo P, Seppä P (2002) Biased sperm use by polyandrous queens of the ant Proformica longiseta. Behav Ecol Sociobiol 51:207–213
Fjerdingstad EJ, Crozier RH (2006) The evolution of worker caste diversity in social insects. Am Nat 167:390–400
Fjerdingstad EJ, Gertsch PJ, Keller L (2002) Why do some social insect queens mate with several males? testing the sex-ratio manipulation hypothesis in Lasius niger. Evolution 56:553–562
Fournier D, Battaille G, Timmermans I, Aron S (2008) Genetic diversity, worker size polymorphism and division of labour in the polyandrous ant Cataglyphis cursor. Anim Behav 75:151–158
Fowler HG (1986) Polymorphism and colony ontogeny in North American carpenter ants (Hymenoptera: Formicidae: Camponotus pennsylvanicus and Camponotus ferrugineus). Zoologische Jahrbücher. Abteilung Für Allgemeine Zoologie Und Physiologie Der Tiere 90:297–316
Gardner MG, Schönrogge K, Elmes G, Thomas J (2007) Increased genetic diversity as a defence against parasites is undermined by social parasites: Microdon mutabilis hoverflies infesting Formica lemani ant colonies. Proc R Soc B Biol Sci 274:103–110
Goodisman MA, Hahn DA (2004) Colony genetic structure of the ant Camponotus ocreatus (Hymenoptera: Formicidae). Sociobiology 44:21–34
Goodisman MA, Hahn DA (2005) Breeding system, colony structure, and genetic differentiation in the Camponotus festinatus species complex of carpenter ants. Evolution 59:2185–2199
Goropashnaya AV, Seppä P, Pamilo P (2001) Social and genetic characteristics of geographically isolated populations in the ant Formica cinerea. Mol Ecol 10:2807–2818
Goropashnaya AV, Fedorov VB, Seifert B, Pamilo P (2007) Phylogeography and population structure in the ant Formica exsecta (Hymenoptera, Formicidae) across Eurasia as reflected by mitochondrial DNA variation and microsatellites. In Annales Zoologici Fennici pp. 462–474
Gruber MA, Hoffmann BD, Ritchie PA, Lester PJ (2012) Recent behavioural and population genetic divergence of an invasive ant in a novel environment. Divers Distrib 18:323–333
Gyllenstrand N, Seppä P (2003) Conservation genetics of the wood ant, Formica lugubris, in a fragmented landscape. Mol Ecol 12:2931–2940
Gyllenstrand N, Seppä P, Pamilo P (2004) Genetic differentiation in sympatric wood ants, Formica rufa and F. polyctena. Insectes Soc 51:139–145
Gyllenstrand N, Seppä P, Pamilo P (2005) Restricted gene flow between two social forms in the ant Formica truncorum. J Evol Biol 18:978–984
Haag-Liautard C, Pedersen J, Ovaskainen O, Keller L (2008) Breeding system and reproductive skew in a highly polygynous ant population. Insectes Soc 55:347–354
Hannonen M, Sundström L (2003) Reproductive sharing among queens in the ant Formica fusca. Behav Ecol 14:870–875
Hannonen M, Helanterä H, Sundström L (2004) Habitat age, breeding system and kinship in the ant Formica fusca. Mol Ecol 13:1579–1588
Helanterä H, Sundström L (2007) Worker reproduction in Formica ants. Am Nat 170:E14–E25
Helanterä H, Lee YR, Drijfhout FP, Martin SJ (2011) Genetic diversity, colony chemical phenotype, and nest mate recognition in the ant Formica fusca. Behav Ecol 22:710–716
Helanterä H, Kulmuni J, Pamilo P (2016) Sex allocation conflict between queens and workers in Formica pratensis wood ants predicts seasonal sex ratio variation. Evolution 70:2387–2394
Hoelldobler B, Grillenberger B, Gadau J (2011) Queen number and raiding behavior in the ant genus Myrmecocystus (Hymenoptera: Formicidae). Myrmecological News 15:53–61
Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge
Holzer B, Keller L, Chapuisat M (2009) Genetic clusters and sex-biased gene flow in a unicolonial Formica ant. BMC Evol Biol 9:1–11
Jowers MJ et al (2013) Social and population structure in the ant Cataglyphis emmae. PLoS ONE 8:e72941
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780
Kidokoro-Kobayashi M et al (2012) Chemical discrimination and aggressiveness via cuticular hydrocarbons in a supercolony-forming ant. Formica Yessensis Plos One 7:e46840
Kronauer D, Miller D, Hoelldobler B (2003) Genetic evidence for intra–and interspecific slavery in honey ants (genus Myrmecocystus). Proc R Soc Lond Ser B Biol Sci 270:805–810
Kümmerli R, Keller L (2007a) Contrasting population genetic structure for workers and queens in the putatively unicolonial ant Formica exsecta. Mol Ecol 16:4493–4503
Kümmerli R, Keller L (2007b) Extreme reproductive specialization within ant colonies: some queens produce males whereas others produce workers. Anim Behav 74:1535–1543
Kümmerli R, Keller L (2008) Reproductive parameters vary with social and ecological factors in the polygynous ant Formica exsecta. Oikos 117:580–590
Lecocq de Pletincx N, Aron S (2020) Sociogenetic Organization of the Red Honey Ant (Melophorus bagoti). InSects 11:755
Leigh JW, Bryant D (2015) popart: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116
Leniaud L, Heftez A, Grumiau L, Aron S (2011) Multiple mating and supercoloniality in Cataglyphis desert ants. Biol J Lin Soc 104:866–876
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760
Li C, Weeks D, Chakravarti A (1993) Similarity of DNA fingerprints due to chance and relatedness. Hum Hered 43:45–52
Li H et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079
Liautard C, Keller L (2001) Restricted effective queen dispersal at a microgeographic scale in polygynous populations of the ant Formica exsecta. Evolution 55:2484–2492
Mackay W (2019) New world carpenter ants of the hyperdiverse genus Camponotus. Volume 1: introduction, keys to the subgenera and species complexes and the subgenus Camponotus. Lambert Academic Publishing, Saarbruecken
Mäki-Petäys H, Zakharov A, Viljakainen L, Corander J, Pamilo P (2005) Genetic changes associated to declining populations of Formica ants in fragmented forest landscape. Mol Ecol 14:733–742
Malé P, Youngerman E, Pierce N, Frederickson M (2020) Mating system, population genetics, and phylogeography of the devil’s garden ant, Myrmelachista schumanni, in the Peruvian Amazon. Insectes Soc 67:113–125
Manichaikul A et al (2010) Robust relationship inference in genome-wide association studies. Bioinformatics 26:2867–2873
Manthey JD, Girón JC, Hruska JP (2022) Impact of host demography and evolutionary history on endosymbiont molecular evolution: A test in carpenter ants (genus Camponotus) and their Blochmannia endosymbionts. Ecol Evol 12:e9026
Martin SJ, Vitikainen E, Drijfhout FP, Jackson D (2012) Conspecific ant aggression is correlated with chemical distance, but not with genetic or spatial distance. Behav Genet 42:323–331
McKenna A et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303
Muna N (2008) An investigation of the sociogenetic structure of the endemic fynbos ant, Camponotus klugii, via the use of microsatellites. [University of Cape Town]
Pamilo P (1981) Genetic organization of Formica sanguinea populations. Behav Ecol Sociobiol 9:45–50
Pamilo P (1982) Genetic population structure in polygynous Formica ants. Heredity 48:95–106
Pamilo P (1983) Genetic differentiation within subdivided populations of Formica ants. Evolution 37:1010–1022
Pamilo P (1991) Life span of queens in the ant Formica exsecta. Insectes Soc 38:111–119
Pamilo P (1993) Polyandry and allele frequency differences between the sexes in the ant Formica aquilonia. Heredity 70:472–480
Pamilo P, Rosengren R (1984) Evolution of nesting strategies of ants: genetic evidence from different population types of Formica ants. Biol J Lin Soc 21:331–348
Pamilo P, Seppä P (1994) Reproductive competition and conflicts in colonies of the ant Formica sanguinea. Anim Behav 48:1201–1206
Pamilo P, Varvio-Aho S-L (1979) Genetic structure of nests in the ant Formica sanguinea. Behav Ecol Sociobiol 6:91–98
Pamilo P, Zhu D, Fortelius W, Rosengren R, Seppä P, Sundström L (2005) Genetic patchwork of network-building wood ant populations. In Annales Zoologici Fennici, Finnish Zoological and Botanical Publishing Board, pp. 179–187
Pearcy M, Aron S (2006) Local resource competition and sex ratio in the ant Cataglyphis cursor. Behav Ecol 17:569–574
Pew J, Muir PH, Wang J, Frasier TR (2015) related: an R package for analysing pairwise relatedness from codominant molecular markers. Mol Ecol Resour 15:557–561
Pirk C, Neumann P, Moritz R, Pamilo P (2001) Intranest relatedness and nestmate recognition in the meadow ant Formica pratensis (R.). Behav Ecol Sociobiol 49:366–374
Pricer JL (1908) The life history of the carpenter ant. Biol Bull 14:177–218
Procter DS et al (2016) Does cooperation mean kinship between spatially discrete ant nests? Ecol Evol 6:8846–8856
Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275
Rees SD, Orledge GM, Bruford MW, Bourke AF (2010) Genetic structure of the Black Bog Ant (Formica picea Nylander) in the United Kingdom. Conserv Genet 11:823–834
Rosenberg NA, Nordborg M (2006) A general population-genetic model for the production by population structure of spurious genotype–phenotype associations in discrete, admixed or spatially distributed populations. Genetics 173:1665–1678
Rosset H, Schwander T, Chapuisat M (2007) Nestmate recognition and levels of aggression are not altered by changes in genetic diversity in a socially polymorphic ant. Anim Behav 74:951–956
Sanllorente O, Ruano F, Tinaut A (2015) Large-scale population genetics of the mountain ant Proformica longiseta (Hymenoptera: Formicidae). Popul Ecol 57:637–648
Sasaki K, Satoh T, Obara Y (1996) Cooperative foundation of colonies by unrelated foundresses in the ant Polyrhachis moesta. Insectes Soc 43:217–226
Satoh T, Masuko K, Matsumoto T (1997) Colony genetic structure in the mono-and polygynous sibling species of the ants Camponotus nawai and Camponotus yamaokai: DNA fingerprint analysis. Ecol Res 12:71–76
Savolainen R, Seppä P (1996) Genetic relatedness among worker nestmates of three formicine slave-making ants. Insectes Soc 43:31–36
Schultner E, Gardner A, Karhunen M, Helanterä H (2014) Ant larvae as players in social conflict: relatedness and individual identity mediate cannibalism intensity. Am Nat 184:E161–E174
Schultner E, Saramäki J, Helanterä H (2016) Genetic structure of native ant supercolonies varies in space and time. Mol Ecol 25:6196–6213
Seifert B, Kulmuni J, Pamilo P (2010) Independent hybrid populations of Formica polyctena X rufa wood ants (Hymenoptera: Formicidae) abound under conditions of forest fragmentation. Evol Ecol 24:1219–1237
Seppä P, Gertsch P (1996) Genetic relatedness in the ant Camponotus herculeanus. A comparison of estimates from allozyme and DNA microsatellite markers. Insectes Soc 43:235–246
Seppä P, Sundström L, Punttila P (1995) Facultative polygyny and habitat succession in boreal ants. Biol J Lin Soc 56:533–551
Seppä P, Gyllenstrand N, Corander J, Pamilo P (2004) Coexistence of the social types: genetic population structure in the ant Formica exsecta. Evolution 58:2462–2471
Seppä P, Fernández-Escudero I, Gyllenstrand N, Pamilo P (2008) Colony fission affects kinship in a social insect. Behav Ecol Sociobiol 62:589–597
Seppä P et al (2009) Population genetics of the black ant Formica lemani (Hymenoptera: Formicidae). Biol J Lin Soc 97:247–258
Seppä P, Johansson H, Gyllenstrand N, Pálsson S, Pamilo P (2012) Mosaic structure of native ant supercolonies. Mol Ecol 21:5880–5891
Skaldina O, Sorvari J (2020) Phenotypic diversity in red wood ants (Hymenoptera: Formicidae): Is kinship involved? Eur J Entomol 117:27–33
Steiner FM et al (2007) Abandoning aggression but maintaining self-nonself discrimination as a first stage in ant supercolony formation. Curr Biol 17:1903–1907
Sundström L (1993) Genetic population structure and sociogenetic organisation in Formica truncorum (Hymenoptera; Formicidae). Behav Ecol Sociobiol 33:345–354
Sundström L, Keller L, Chapuisat M (2003) Inbreeding and sex-biased gene flow in the ant Formica exsecta. Evolution 57:1552–1561
Thomas ML, Becker K, Abbott K, Feldhaar H (2010) Supercolony mosaics: two different invasions by the yellow crazy ant, Anoplolepis gracilipes, on Christmas Island, Indian Ocean. Biol Invasions 12:677–687
Thurin N, Sery N, Guimbretiere R, Aron S (2011) Colony kin structure and breeding system in the ant genus Plagiolepis. Mol Ecol 20:3251–3260
Timmermans I, Hefetz A, Fournier D, Aron S (2008) Population genetic structure, worker reproduction and thelytokous parthenogenesis in the desert ant Cataglyphis sabulosa. Heredity 101:490–498
Tinaut A et al (2010) Nest composition and worker relatedness in three slave-making ants of the genus Rossomyrmex Arnoldi and their Proformica Ruzsky hosts (Hymenoptera, Formicidae). Insect Science 17:361–368
Trontti K, Aron S, Sundström L (2005) Inbreeding and kinship in the ant Plagiolepis pygmaea. Mol Ecol 14:2007–2015
Trontti K, Thurin N, Sundström L, Aron S (2007) Mating for convenience or genetic diversity? Mating patterns in the polygynous ant Plagiolepis pygmaea. Behav Ecol 18:298–303
Van der Have T, Boomsma J, Menken S (1988) Sex-investment ratios and relatedness in the monogynous ant Lasius niger (L.). Evolution 42:160–172
van Zweden JS, Carew ME, Henshaw MT, Robson SK, Crozier RH (2007) Social and genetic structure of a supercolonial weaver ant, Polyrhachis robsoni, with dimorphic queens. Insectes Soc 54:34–41
Vanhala T, Watts K, A’Hara S, Cottrell J (2014) Population genetics of Formica aquilonia wood ants in Scotland: the effects of long-term forest fragmentation and recent reforestation. Conserv Genet 15:853–868
Vitikainen E, Haag-Liautard C, Sundström L (2011) Inbreeding and reproductive investment in the ant Formica exsecta. Evolution 65:2026–2037
Vitikainen EI, Haag-Liautard C, Sundström L (2015) Natal dispersal, mating patterns, and inbreeding in the ant Formica exsecta. Am Nat 186:716–727
Wang J (2002) An estimator for pairwise relatedness using molecular markers. Genetics 160:1203–1215
Waples RK, Albrechtsen A, Moltke I (2019) Allele frequency-free inference of close familial relationships from genotypes or low-depth sequencing data. Mol Ecol 28:35–48
Ward PS, Blaimer BB, Fisher BL (2016) A revised phylogenetic classification of the ant subfamily Formicinae (Hymenoptera: Formicidae), with resurrection of the genera Colobopsis and Dinomyrmex. Zootaxa 4072:343–357
Wickham H (2011) ggplot2. Wiley Interdiscip Rev Comput Stat 3:180–185
Yu G, Smith DK, Zhu H, Guan Y, Lam TTY (2017) ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 8:28–36
Zhu D, Chapuisat M, Pamilo P (2003) Highly variable social organisation of colonies in the ant Formica cinerea. Hereditas 139:7–12
Acknowledgements
This work was supported by Texas Tech University startup funds to JDM (sequencing) and National Science Foundation award #1953688 to JDM (support of undergraduate research students). Mohamed Fokar at the TTU Center for Biotechnology & Genomics provided sequencing support. The TTU Center for Biotechnology & Genomics acquisition of the NovaSeq6000 was supported by NIH grant 1S10OD025115-01. The High-Performance Computing Center at TTU supported computational analyses. The Invertebrate Zoology Collection of the Museum of Texas tech University houses voucher specimens of the colonies used in this study.
Author information
Authors and Affiliations
Contributions
All authors contributed to data analysis and writing and revision of the manuscript. JDM and JPH performed fieldwork. JDM performed DNA extractions. JCG and JDM took ant specimen photographs.
Corresponding author
Ethics declarations
Conflict of interests
The authors declare no conflict of interest.
Supplementary Information
Below is the link to the electronic supplementary material.
Appendix 1
Appendix 1
See Table 3
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Meadows, B.A., Emad, M., Hruska, J.P. et al. Relatedness within colonies of three North American species of carpenter ants (Subgenus: Camponotus) and a comparison with relatedness estimates across Formicinae. Insect. Soc. 70, 191–202 (2023). https://doi.org/10.1007/s00040-023-00906-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00040-023-00906-7