Abstract
Bumblebees (Bombus) are charismatic and important pollinators. They are one of the best-studied insect groups, especially in terms of ecology, behavior, and social structure. As many species are declining, there is a clear need to understand more about them. Microbial symbionts, which can influence many dimensions of animal life, likely have an outsized role in bumblebee biology. Recent research has shown that a conserved set of beneficial gut bacterial symbionts is ubiquitous across bumblebees. These bacteria are related to gut symbionts of honeybees, but have not been studied as intensively. Here, we synthesize studies of bumblebee gut microbiota, highlight major knowledge gaps, and suggest future directions. Several patterns emerge, such as symbiont-host specificity maintained by sociality, frequent symbiont loss from individual bees, symbiont-conferred protection from trypanosomatid parasites, and divergence between bumblebee and honeybee microbiota in several key traits. For many facets of bumblebee–microbe interactions, however, underlying mechanisms and ecological functions remain unclear. Such information is important if we are to understand how bumblebees shape, and are shaped by, their gut microbiota. Bumblebees may prove a useful system for microbiome scientists, providing insights into general principles of host–microbe interactions. We also note how microbiota could influence bumblebee traits and responses to stressors. Finally, we propose that tinkering with the microbiota could be one way to aid bumblebee resilience in the face of global change.
Similar content being viewed by others
Availability of data and material
The dataset used to create Fig. 1 is provided in Table S2. Additional citations used for the literature review are provided in Table S1.
Code availability
Not applicable.
References
Adler LS (2000) The ecological significance of toxic nectar. Oikos 91:409–420. https://doi.org/10.1034/j.1600-0706.2000.910301.x
Anderson KE, Carroll MJ, Sheehan T et al (2014) Hive-stored pollen of honey bees: many lines of evidence are consistent with pollen preservation, not nutrient conversion. Mol Ecol 23:5904–5917. https://doi.org/10.1111/mec.12966
Batra LR, Batra SWT, Bohart GE (1973) The mycoflora of domesticated and wild bees (Apoidea). Mycopath Mycol Appl 49:13–44. https://doi.org/10.1007/BF02057445
Billiet A, Meeus I, Van Nieuwerburgh F et al (2017) Colony contact contributes to the diversity of gut bacteria in bumblebees (Bombus terrestris). Insect Sci 24:270–277. https://doi.org/10.1111/1744-7917.12284
Bonilla-Rosso G, Engel P (2018) Functional roles and metabolic niches in the honey bee gut microbiota. Curr Opin Microbiol 43:69–76. https://doi.org/10.1016/j.mib.2017.12.009
Bonilla-Rosso G, Steiner T, Wichmann F et al (2020) Honey bees harbor a diverse gut virome engaging in nested strain-level interactions with the microbiota. PNAS 117:7355–7362. https://doi.org/10.1073/pnas.2000228117
Bosmans L, Pozo M, Verreth C et al (2018a) Hibernation leads to altered gut communities in bumblebee queens (Bombus terrestris). Insects 9:188. https://doi.org/10.3390/insects9040188
Bosmans L, Pozo MI, Verreth C et al (2018b) Habitat-specific variation in gut microbial communities and pathogen prevalence in bumblebee queens (Bombus terrestris). PLoS ONE 13:e0204612. https://doi.org/10.1371/journal.pone.0204612
Bossert S, Murray EA, Almeida EAB et al (2019) Combining transcriptomes and ultraconserved elements to illuminate the phylogeny of Apidae. Mol Phylogenet Evol 130:121–131. https://doi.org/10.1016/j.ympev.2018.10.012
Brune A, Dietrich C (2015) The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol 69:145–166. https://doi.org/10.1146/annurev-micro-092412-155715
Brysch-Herzberg M (2004) Ecology of yeasts in plant–bumblebee mutualism in Central Europe. FEMS Microbiol Ecol 50:87–100. https://doi.org/10.1016/j.femsec.2004.06.003
Calderone NW (2012) Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS ONE 7:e37235. https://doi.org/10.1371/journal.pone.0037235
Cameron SA (1989) Temporal patterns of division of labor among workers in the primitively eusocial bumble bee, Bombus griseocollis (Hymenoptera: Apidae). Ethology 80:137–151. https://doi.org/10.1111/j.1439-0310.1989.tb00735.x
Cameron SA, Sadd BM (2020) Global trends in bumble bee health. Annu Rev Entomol 65:209–232. https://doi.org/10.1146/annurev-ento-011118-111847
Cameron SA, Lozier JD, Strange JP et al (2011) Patterns of widespread decline in North American bumble bees. PNAS 108:662–667. https://doi.org/10.1073/pnas.1014743108
Cameron SA, Lim HC, Lozier JD et al (2016) Test of the invasive pathogen hypothesis of bumble bee decline in North America. PNAS 113:4386–4391. https://doi.org/10.1073/pnas.1525266113
Cariveau DP, Powell JE, Koch H et al (2014) Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). ISME J 8:2369–2379. https://doi.org/10.1038/ismej.2014.68
Carnell JD, Hulse RA, Hughes WOH (2020) A review of nutrition in bumblebees: the effect of caste, life-stage and life history traits. Advances in insect physiology. Elsevier, pp 71–129
Cerqueira AES, Hammer TJ, Moran NA et al (2021) Extinction of anciently associated gut bacterial symbionts in a clade of stingless bees. ISME J. https://doi.org/10.1038/s41396-021-01000-1
Colgan TJ, Finlay S, Brown MJF, Carolan JC (2019) Mating precedes selective immune priming which is maintained throughout bumblebee queen diapause. BMC Genomics 20:959. https://doi.org/10.1186/s12864-019-6314-9
Costa CP, Duennes MA, Fisher K et al (2020) Transcriptome analysis reveals nutrition- and age-related patterns of gene expression in the fat body of pre-overwintering bumble bee queens. Mol Ecol 29:720–737. https://doi.org/10.1111/mec.15361
Crall JD, Switzer CM, Oppenheimer RL et al (2018) Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation. Science 686:683–686. https://doi.org/10.1126/science.aat1598
Cremer S, Armitage SAO, Schmid-Hempel P (2007) Social immunity. Curr Biol 17:R693–R702. https://doi.org/10.1016/j.cub.2007.06.008
das Dores-Teixeira A, Marques-Araújo S, Zanuncio JC, Serrão JE (2015) Peritrophic membrane origin in adult bees (Hymenoptera): Immunolocalization. Micron 68:91–97. https://doi.org/10.1016/j.micron.2014.09.009
Deboutte W, Beller L, Yinda CK et al (2020) Honey-bee–associated prokaryotic viral communities reveal wide viral diversity and a profound metabolic coding potential. PNAS 117:10511–10519. https://doi.org/10.1073/pnas.1921859117
Decker LE, San Juan PA, Warren ML et al (2020) Higher variability in fungi compared to bacteria in the foraging honey bee gut. bioRxiv. https://doi.org/10.1101/2020.10.20.348128
Dharampal PS, Diaz-Garcia L, Haase MAB et al (2020) Microbial diversity associated with the pollen stores of captive-bred bumble bee colonies. Insects 11:250
Durrer S, Schmid-Hempel P (1994) Shared use of flowers leads to horizontal pathogen transmission. Proc R Soc B 258:299–302. https://doi.org/10.1098/rspb.1994.0176
Ellegaard KM, Brochet S, Bonilla-Rosso G et al (2019) Genomic changes underlying host specialization in the bee gut symbiont Lactobacillus Firm5. Mol Ecol 28:2224–2237. https://doi.org/10.1111/mec.15075
Ellegaard KM, Suenami S, Miyazaki R, Engel P (2020) Vast differences in strain-level diversity in the gut microbiota of two closely related honey bee species. Curr Biol 30:2520–2531. https://doi.org/10.1101/2020.01.23.916296
Engel P, Moran NA (2013) The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev 37:699–735. https://doi.org/10.1111/1574-6976.12025
Estoup A, Scholl A, Pouvreau A, Solignac M (1995) Monoandry and polyandry in bumble bees (Hymenoptera; Bombinae) as evidenced by highly variable microsatellites. Mol Ecol 4:89–94. https://doi.org/10.1111/j.1365-294X.1995.tb00195.x
Figueroa LL, Blinder M, Grincavitch C et al (2019) Bee pathogen transmission dynamics: deposition, persistence and acquisition on flowers. Proc R Soc B 286:20190603. https://doi.org/10.1098/rspb.2019.0603
Fünfhaus A, Ebeling J, Genersch E (2018) Bacterial pathogens of bees. Curr Opin Insect Sci 26:89–96. https://doi.org/10.1016/j.cois.2018.02.008
Giacomini JJ, Leslie J, Tarpy DR et al (2018) Medicinal value of sunflower pollen against bee pathogens. Sci Rep 8:14394. https://doi.org/10.1038/s41598-018-32681-y
Goulson D (2003) Bumblebees: behaviour and ecology. Oxford University Press
Hammer TJ, Bowers MD (2015) Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 179:1–14. https://doi.org/10.1007/s00442-015-3327-1
Hammer M, Menzel R (1995) Learning and memory in the honeybee. J Neurosci 15:1617–1630
Hammer TJ, Moran NA (2019) Links between metamorphosis and symbiosis in holometabolous insects. Philos Trans R Soc B 374:20190068. https://doi.org/10.1098/rstb.2019.0068
Hammer TJ, Janzen DH, Hallwachs W et al (2017) Caterpillars lack a resident gut microbiome. PNAS 114:9641–9646. https://doi.org/10.1073/pnas.1707186114
Hammer TJ, Sanders JG, Fierer N (2019) Not all animals need a microbiome. FEMS Microbiol Lett 366:fnz117. https://doi.org/10.1093/femsle/fnz117
Hammer TJ, Dickerson JC, McMillan WO, Fierer N (2020) Heliconius butterflies host characteristic and phylogenetically structured adult-stage microbiomes. Appl Environ Microbiol 86:e02007-e2020. https://doi.org/10.1128/AEM.02007-20
Hammer TJ, Le E, Moran NA (2021) Thermal niches of specialized gut symbionts: the case of social bees. Proc R Soc B 288:20201480
Heinrich B (1979) Bumblebee economics. Harvard University Press, Cambridge
Hines HM (2008) Historical biogeography, divergence times, and diversification patterns of bumble bees (Hymenoptera: Apidae: Bombus). Syst Biol 57:58–75. https://doi.org/10.1080/10635150801898912
Holtof M, Lenaerts C, Cullen D, Vanden Broeck J (2019) Extracellular nutrient digestion and absorption in the insect gut. Cell Tissue Res 377:397–414. https://doi.org/10.1007/s00441-019-03031-9
Keller A, McFrederick QS, Dharampal P et al (2021) (More than) Hitchhikers through the network: the shared microbiome of bees and flowers. Curr Opin Insect Sci 44:8–15. https://doi.org/10.1016/j.cois.2020.09.007
Kešnerová L, Emery O, Troilo M et al (2020) Gut microbiota structure differs between honeybees in winter and summer. ISME J 14:801–814. https://doi.org/10.1038/s41396-019-0568-8
Kikuchi Y, Tada A, Musolin DL et al (2016) Collapse of insect gut symbiosis under simulated climate change. Mbio 7:e01578-e1616. https://doi.org/10.1128/mBio.01578-16
Killer J, Kopečný J, Mrázek J et al (2010) Bombiscardovia coagulans gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of bumblebees. Syst Appl Microbiol 33:359–366. https://doi.org/10.1016/j.syapm.2010.08.002
Killer J, Votavová A, Valterová I et al (2014) Lactobacillus bombi sp. nov., from the digestive tract of laboratory-reared bumblebee queens (Bombus terrestris). Int J Syst Evol Microbiol 64:2611–2617. https://doi.org/10.1099/ijs.0.063602-0
Klungness LM, Peng Y-S (1983) A scanning electron microscopic study of pollen loads collected and stored by honeybees. J Apic Res 22:264–271. https://doi.org/10.1080/00218839.1983.11100598
Koch H, Schmid-Hempel P (2011a) Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. PNAS 108:19288–19292. https://doi.org/10.1073/pnas.1110474108
Koch H, Schmid-Hempel P (2011b) Bacterial communities in central European bumblebees: low diversity and high specificity. Microb Ecol 62:121–133. https://doi.org/10.1007/s00248-011-9854-3
Koch H, Schmid-Hempel P (2012) Gut microbiota instead of host genotype drive the specificity in the interaction of a natural host-parasite system. Ecol Lett 15:1095–1103. https://doi.org/10.1111/j.1461-0248.2012.01831.x
Koch H, Cisarovsky G, Schmid-Hempel P (2012) Ecological effects on gut bacterial communities in wild bumblebee colonies. J Anim Ecol 81:1202–1210. https://doi.org/10.1111/j.1365-2656.2012.02004.x
Koch H, Abrol DP, Li J, Schmid-Hempel P (2013) Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. Mol Ecol 22:2028–2044. https://doi.org/10.1111/mec.12209
Koch H, Woodward J, Langat MK et al (2019) Flagellum removal by a nectar metabolite inhibits infectivity of a bumblebee parasite. Curr Biol 29:3494–3500. https://doi.org/10.1016/j.cub.2019.08.037
Kwong WK, Moran NA (2013) Cultivation and characterization of the gut symbionts of honey bees and bumble bees: description of Snodgrassella alvi gen. nov., sp. nov., a member of the family Neisseriaceae of the Betaproteobacteria, and Gilliamella apicola gen. nov., sp. nov., a member of Orbaceae fam. nov., Orbales ord. nov., a sister taxon to the order ‘Enterobacteriales’ of the Gammaproteobacteria. Int J Syst Evol Microbiol 63:2008–2018. https://doi.org/10.1099/ijs.0.044875-0
Kwong WK, Moran NA (2016) Gut microbial communities of social bees. Nat Rev Microbiol 14:374–384. https://doi.org/10.1038/nrmicro.2016.43
Kwong WK, Engel P, Koch H, Moran NA (2014) Genomics and host specialization of honey bee and bumble bee gut symbionts. PNAS 111:11509–11514. https://doi.org/10.1073/pnas.1405838111
Kwong WK, Mancenido AL, Moran NA (2017a) Immune system stimulation by the native gut microbiota of honey bees. R Soc Open Sci 4:170003. https://doi.org/10.1098/rsos.170003
Kwong WK, Medina LA, Koch H et al (2017b) Dynamic microbiome evolution in social bees. Sci Adv 3:e1600513. https://doi.org/10.1126/sciadv.1600513
Laverty T, Plowright R (1985) Comparative bionomics of temperate and tropical bumble bees with special reference to Bombus ephippiatus (Hymenoptera: Apidae). Can Entomol 117:467–474
Leger L, McFrederick QS (2020) The gut–brain–microbiome axis in bumble bees. Insects 11:517. https://doi.org/10.3390/insects11080517
Leonard SP, Perutka J, Powell JE et al (2018) Genetic engineering of bee gut microbiome bacteria with a toolkit for modular assembly of broad-host-range plasmids. ACS Synth Biol 7:1279–1290. https://doi.org/10.1021/acssynbio.7b00399
Leonard SP, Powell JE, Perutka J et al (2020) Engineered symbionts activate honey bee immunity and limit pathogens. Science 367:573–576
Leonhardt SD, Blüthgen N (2012) The same, but different: pollen foraging in honeybee and bumblebee colonies. Apidologie 43:449–464. https://doi.org/10.1007/s13592-011-0112-y
Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E (2017) Dysbiosis and the immune system. Nat Rev Immunol 17:219–232. https://doi.org/10.1038/nri.2017.7
Lewis Z, Lizé A (2015) Insect behaviour and the microbiome. Curr Opin Insect Sci 9:86–90. https://doi.org/10.1016/j.cois.2015.03.003
Lhomme P, Hines HM (2019) Ecology and evolution of cuckoo bumble bees. Ann Ent Soc Am 112:122–140. https://doi.org/10.1093/aesa/say031
Li J, Powell JE, Guo J et al (2015a) Two gut community enterotypes recur in diverse bumblebee species. Curr Biol 25:R652–R653. https://doi.org/10.1016/j.cub.2015.06.031
Li L, Praet J, Borremans W et al (2015b) Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop. Int J Syst Evol Microbiol 65:267–273. https://doi.org/10.1099/ijs.0.068049-0
Liberti J, Engel P (2020) The gut microbiota—brain axis of insects. Curr Opin Insect Sci 39:6–13. https://doi.org/10.1016/j.cois.2020.01.004
Lim HC, Chu CC, Seufferheld MJ, Cameron SA (2015) Deep sequencing and ecological characterization of gut microbial communities of diverse bumble bee species. PLoS ONE 10:1–22. https://doi.org/10.1371/journal.pone.0118566
Loukola OJ, Perry CJ, Coscos L, Chittka L (2017) Bumblebees show cognitive flexibility by improving on an observed complex behavior. Science 355:833–836. https://doi.org/10.1126/science.aag2360
Macfarlane RP, Lipa JJ, Liu HJ (1995) Bumble bee pathogens and internal enemies. Bee World 76:130–148. https://doi.org/10.1080/0005772X.1995.11099259
Mao W, Schuler MA, Berenbaum MR (2017) Disruption of quercetin metabolism by fungicide affects energy production in honey bees (Apis mellifera). PNAS 114:2538–2543. https://doi.org/10.1073/pnas.1614864114
Martinson VG, Danforth BN, Minckley RL et al (2011) A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 20:619–628. https://doi.org/10.1111/j.1365-294X.2010.04959.x
Martinson VG, Moy J, Moran NA (2012) Establishment of characteristic gut bacteria during development of the honeybee worker. Appl Environ Microbiol 78:2830–2840
McFrederick QS, Thomas JM, Neff JL et al (2017) Flowers and wild megachilid bees share microbes. Microb Ecol 73:188–200. https://doi.org/10.1007/s00248-016-0838-1
Meeus I, Mommaerts V, Billiet A et al (2013) Assessment of mutualism between Bombus terrestris and its microbiota by use of microcolonies. Apidologie 44:708–719. https://doi.org/10.1007/s13592-013-0222-9
Meeus I, Parmentier L, Billiet A et al (2015) 16S rRNA amplicon sequencing demonstrates that indoor-reared bumblebees (Bombus terrestris) harbor a core subset of bacteria normally associated with the wild host. PLoS ONE 10:1–15. https://doi.org/10.1371/journal.pone.0125152
Michener CD (1974) The social behavior of the bees: a comparative study. Harvard University Press, Cambridge
Miller-Struttmann NE, Geib JC, Franklin JD et al (2015) Functional mismatch in a bumble bee pollination mutualism under climate change. Science 349:1541–1544. https://doi.org/10.1126/science.aab0868
Mockler BK, Kwong WK, Moran NA, Koch H (2018) Microbiome structure influences infection by the parasite Crithidia bombi in bumble bees. Appl Environ Microbiol 84:e02335-e2417. https://doi.org/10.1128/AEM.02335-17
Mohr KI, Tebbe CC (2006) Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ Microbiol 8:258–272. https://doi.org/10.1111/j.1462-2920.2005.00893.x
Moran NA, Ochman H, Hammer TJ (2019) Evolutionary and ecological consequences of gut microbial communities. Annu Rev Ecol Evol Syst 50:451–475. https://doi.org/10.1146/annurev-ecolsys-110617-062453
Näpflin K, Schmid-Hempel P (2016) Immune response and gut microbial community structure in bumblebees after microbiota transplants. Proc R Soc B. https://doi.org/10.1098/rspb.2016.0312
Näpflin K, Schmid-Hempel P (2018a) Host effects on microbiota community assembly. J Anim Ecol 87:331–340. https://doi.org/10.1111/1365-2656.12768
Näpflin K, Schmid-Hempel P (2018b) High gut microbiota diversity provides lower resistance against infection by an intestinal parasite in bumblebees. Am Nat 192:131–141. https://doi.org/10.1086/698013
Newbold LK, Oliver AE, Cuthbertson L et al (2015) Rearing and foraging affects bumblebee (Bombus terrestris) gut microbiota. Environ Microbiol Rep 7:634–641. https://doi.org/10.1111/1758-2229.12299
Otterstatter MC, Thomson JD (2007) Contact networks and transmission of an intestinal pathogen in bumble bee (Bombus impatiens) colonies. Oecologia 154:411–421. https://doi.org/10.1007/s00442-007-0834-8
Palmer-Young EC, Raffel TR, McFrederick QS (2018) pH-mediated inhibition of a bumble bee parasite by an intestinal symbiont. Parasitology 146:380–388. https://doi.org/10.1017/S0031182018001555
Palmer-Young EC, Ngor L, Burciaga Nevarez R et al (2019) Temperature dependence of parasitic infection and gut bacterial communities in bumble bees. Environ Microbiol 21:4706–4723. https://doi.org/10.1111/1462-2920.14805
Parmentier L, Meeus I, Mosallanejad H et al (2016) Plasticity in the gut microbial community and uptake of Enterobacteriaceae (Gammaproteobacteria) in Bombus terrestris bumblebees’ nests when reared indoors and moved to an outdoor environment. Apidologie 47:237–250. https://doi.org/10.1007/s13592-015-0393-7
Parmentier A, Meeus I, Van Nieuwerburgh F et al (2018) A different gut microbial community between larvae and adults of a wild bumblebee nest (Bombus pascuorum). Insect Sci 25:66–74. https://doi.org/10.1111/1744-7917.12381
Pereboom JJM (2000) The composition of larval food and the significance of exocrine secretions in the bumblebee Bombus terrestris. Insectes Soc 47:11–20. https://doi.org/10.1007/s000400050003
Powell JE, Martinson VG, Urban-Mead K, Moran NA (2014) Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl Environ Microbiol 80:7378–7387. https://doi.org/10.1128/AEM.01861-14
Powell E, Ratnayeke N, Moran NA (2016a) Strain diversity and host specificity in a specialized gut symbiont of honeybees and bumblebees. Mol Ecol 25:4461–4471. https://doi.org/10.1111/mec.13787
Powell JE, Leonard SP, Kwong WK et al (2016b) Genome-wide screen identifies host colonization determinants in a bacterial gut symbiont. PNAS 113:13887–13892. https://doi.org/10.1073/pnas.1610856113
Powell JE, Eiri D, Moran NA, Rangel J (2018) Modulation of the honey bee queen microbiota: effects of early social contact. PLoS ONE 13:e0200527. https://doi.org/10.1371/journal.pone.0200527
Pozo MI, Bartlewicz J, van Oystaeyen A et al (2018) Surviving in the absence of flowers: do nectar yeasts rely on overwintering bumblebee queens to complete their annual life cycle? FEMS Microbiol Ecol 94:fiy196. https://doi.org/10.1093/femsec/fiy196
Pozo MI, Kemenade G, Oystaeyen A et al (2020) The impact of yeast presence in nectar on bumble bee behavior and fitness. Ecol Monogr 90:e0193. https://doi.org/10.1002/ecm.1393
Pozo MI, Mariën T, van Kemenade G et al (2021) Effects of pollen and nectar inoculation by yeasts, bacteria or both on bumblebee colony development. Oecologia 195:689–703. https://doi.org/10.1007/s00442-021-04872-4
Praet J, Meeus I, Cnockaert M et al (2015a) Bifidobacterium commune sp. nov. isolated from the bumble bee gut. Antonie Van Leeuwenhoek 107:1307–1313. https://doi.org/10.1007/s10482-015-0425-3
Praet J, Meeus I, Cnockaert M et al (2015b) Novel lactic acid bacteria isolated from the bumble bee gut: Convivina intestini gen. nov., sp. nov., Lactobacillus bombicola sp. nov., and Weissella bombi sp. nov. Antonie Van Leeuwenhoek 107:1337–1349. https://doi.org/10.1007/s10482-015-0429-z
Praet J, Brandt ED, Aerts M et al (2016) Apibacter mensalis sp. nov.: a rare member of the bumblebee gut microbiota. Int J Syst Evol Microbiol 66:1645–1651. https://doi.org/10.1099/ijsem.0.000921
Praet J, Parmentier A, Schmid-Hempel R et al (2018) Large-scale cultivation of the bumblebee gut microbiota reveals an underestimated bacterial species diversity capable of pathogen inhibition. Environ Microbiol 20:214–227. https://doi.org/10.1111/1462-2920.13973
Raymann K, Coon KL, Shaffer Z et al (2018) Pathogenicity of Serratia marcescens strains in honey bees. Mbio 9:e01649-e1718. https://doi.org/10.1128/mBio.01649-18
Rothman JA, Leger L, Graystock P et al (2019) The bumble bee microbiome increases survival of bees exposed to selenate toxicity. Environ Microbiol 21:3417–3429. https://doi.org/10.1111/1462-2920.14641
Rothman J, Russell K, Leger L et al (2020) The direct and indirect effects of environmental toxicants on the health of bumble bees and their microbiomes. Proc R Soc B 287:20200980
Sadd BM, Schmid-Hempel P (2006) Insect immunity shows specificity in protection upon secondary pathogen exposure. Curr Biol 16:1206–1210. https://doi.org/10.1016/j.cub.2006.04.047
Sanders JG, Łukasik P, Frederickson ME et al (2017) Dramatic differences in gut bacterial densities correlate with diet and habitat in rainforest ants. Integr Comp Biol 57:705–722. https://doi.org/10.1093/icb/icx088
Sauers LA, Sadd BM (2019) An interaction between host and microbe genotypes determines colonization success of a key bumble bee gut microbiota member. Evolution 73:2333–2342. https://doi.org/10.1111/evo.13853
Schaeffer RN, Mei YZ, Andicoechea J et al (2017) Consequences of a nectar yeast for pollinator preference and performance. Funct Ecol 31:613–621. https://doi.org/10.1111/1365-2435.12762
Schmid-Hempel P (2001) On the evolutionary ecology of host-parasite interactions: addressing the question with regard to bumblebees and their parasites. Naturwissenschaften 88:147–158. https://doi.org/10.1007/s001140100222
Schwarz RS, Moran NA, Evans JD (2016) Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers. PNAS 113:9345–9350. https://doi.org/10.1073/pnas.1606631113
Snowdon JA, Cliver DO (1996) Microorganisms in honey. Int J Food Microbiol 31:1–26
Sookhan N, Lorenzo A, Tatsumi S et al (2020) Linking bacterial diversity to floral identity in the bumble bee pollen basket. Environ DNA 00:1–12
Steele MI, Kwong WK, Whiteley M, Moran NA (2017) Diversification of type VI secretion system toxins reveals ancient antagonism among bee gut microbes. Mbio 8:e01630-e1717. https://doi.org/10.1128/mBio.01630-17
Tian L, Rahman SR, Ezray BD et al (2019) A homeotic shift late in development drives mimetic color variation in a bumble bee. PNAS 116:11857–11865. https://doi.org/10.1073/pnas.1900365116
Vannette RL (2020) The floral microbiome: plant, pollinator, and microbial perspectives. Annu Rev Ecol Evol Syst 51:363–386. https://doi.org/10.1146/annurev-ecolsys-011720-013401
Velthuis HHW, van Doorn A (2006) A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37:421–451. https://doi.org/10.1051/apido:2006019
Vernier CL, Chin IM, Adu-Oppong B et al (2020) The gut microbiome defines social group membership in honey bee colonies. Sci Adv 6:eabd3431. https://doi.org/10.1126/sciadv.abd3431
Wang L, Wu J, Li K et al (2019) Dynamic changes of gut microbial communities of bumble bee queens through important life stages. mSystems 4:e00631-e719. https://doi.org/10.1128/mSystems.00631-19
Williams PH, Osborne JL (2009) Bumblebee vulnerability and conservation world-wide. Apidologie 40:367–387. https://doi.org/10.1051/apido/2009025
Williams P, Colla S, Xie Z (2009) Bumblebee vulnerability: common correlates of winners and losers across three continents. Conserv Biol 23:931–940. https://doi.org/10.1111/j.1523-1739.2009.01176.x
Wintermantel D, Locke B, Andersson GKS et al (2018) Field-level clothianidin exposure affects bumblebees but generally not their pathogens. Nat Commun 9:5446. https://doi.org/10.1038/s41467-018-07914-3
Woodard SH, Bloch GM, Band MR, Robinson GE (2014) Molecular heterochrony and the evolution of sociality in bumblebees (Bombus terrestris). Proc R Soc B 281:20132419. https://doi.org/10.1098/rspb.2013.2419
Zanette LRS, Miller SDL, Faria CMA et al (2014) Bumble bee workers drift to conspecific nests at field scales. Ecol Entomol 39:347–354. https://doi.org/10.1111/een.12109
Zhang Z, Huang M, Qiu L et al (2020) Diversity and functional analysis of Chinese bumblebee gut microbiota reveal the metabolic niche and antibiotic resistance variation of Gilliamella. Insect Sci 28:1–13. https://doi.org/10.1111/1744-7917.12770
Zheng H, Nishida A, Kwong WK et al (2016) Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. Mbio 7:e01326-e1416. https://doi.org/10.1128/mBio.01326-16
Zheng H, Powell JE, Steele MI et al (2017) Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. PNAS 114:4775–4780. https://doi.org/10.1073/pnas.1701819114
Zheng H, Steele MI, Leonard SP et al (2018) Honey bees as models for gut microbiota research. Lab Anim 47:317–325. https://doi.org/10.1038/s41684-018-0173-x
Zheng H, Perreau J, Powell JE et al (2019) Division of labor in honey bee gut microbiota for plant polysaccharide digestion. PNAS 116:25909–25916. https://doi.org/10.1073/pnas.1916224116
Zheng J, Wittouck S, Salvetti E et al (2020) A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 70:2782–2858. https://doi.org/10.1099/ijsem.0.004107
Acknowledgements
We thank G. Espinosa for contributing one of the micrographs, F. Muth for helpful discussions, K. Hammond for assistance preparing figures, and the reviewers for feedback that improved the manuscript.
Funding
Support was provided by a USDA NIFA Postdoctoral Fellowship to TJH (No. 2018-08156), UT Undergraduate Research Fellowships to EL and ANM, and a NIH Grant to NAM (No. R35GM131738).
Author information
Authors and Affiliations
Contributions
TJH and NAM conceptualized the project; EL contributed to the literature review; ANM contributed to imaging and figures; TJH drafted the manuscript, and EL, ANM, and NAM provided input and critical revisions.
Corresponding author
Ethics declarations
Conflict of interest
The authors have no competing interests to declare.
Ethics approval
Imaging used commercial Bombus impatiens, which are not subject to ethical approval requirements.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Hammer, T.J., Le, E., Martin, A.N. et al. The gut microbiota of bumblebees. Insect. Soc. 68, 287–301 (2021). https://doi.org/10.1007/s00040-021-00837-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00040-021-00837-1