Skip to main content

The gut microbiota of bumblebees

Abstract

Bumblebees (Bombus) are charismatic and important pollinators. They are one of the best-studied insect groups, especially in terms of ecology, behavior, and social structure. As many species are declining, there is a clear need to understand more about them. Microbial symbionts, which can influence many dimensions of animal life, likely have an outsized role in bumblebee biology. Recent research has shown that a conserved set of beneficial gut bacterial symbionts is ubiquitous across bumblebees. These bacteria are related to gut symbionts of honeybees, but have not been studied as intensively. Here, we synthesize studies of bumblebee gut microbiota, highlight major knowledge gaps, and suggest future directions. Several patterns emerge, such as symbiont-host specificity maintained by sociality, frequent symbiont loss from individual bees, symbiont-conferred protection from trypanosomatid parasites, and divergence between bumblebee and honeybee microbiota in several key traits. For many facets of bumblebee–microbe interactions, however, underlying mechanisms and ecological functions remain unclear. Such information is important if we are to understand how bumblebees shape, and are shaped by, their gut microbiota. Bumblebees may prove a useful system for microbiome scientists, providing insights into general principles of host–microbe interactions. We also note how microbiota could influence bumblebee traits and responses to stressors. Finally, we propose that tinkering with the microbiota could be one way to aid bumblebee resilience in the face of global change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Availability of data and material

The dataset used to create Fig. 1 is provided in Table S2. Additional citations used for the literature review are provided in Table S1.

Code availability

Not applicable.

References

  1. Adler LS (2000) The ecological significance of toxic nectar. Oikos 91:409–420. https://doi.org/10.1034/j.1600-0706.2000.910301.x

    Article  Google Scholar 

  2. Anderson KE, Carroll MJ, Sheehan T et al (2014) Hive-stored pollen of honey bees: many lines of evidence are consistent with pollen preservation, not nutrient conversion. Mol Ecol 23:5904–5917. https://doi.org/10.1111/mec.12966

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Batra LR, Batra SWT, Bohart GE (1973) The mycoflora of domesticated and wild bees (Apoidea). Mycopath Mycol Appl 49:13–44. https://doi.org/10.1007/BF02057445

    Article  Google Scholar 

  4. Billiet A, Meeus I, Van Nieuwerburgh F et al (2017) Colony contact contributes to the diversity of gut bacteria in bumblebees (Bombus terrestris). Insect Sci 24:270–277. https://doi.org/10.1111/1744-7917.12284

    CAS  Article  PubMed  Google Scholar 

  5. Bonilla-Rosso G, Engel P (2018) Functional roles and metabolic niches in the honey bee gut microbiota. Curr Opin Microbiol 43:69–76. https://doi.org/10.1016/j.mib.2017.12.009

    CAS  Article  PubMed  Google Scholar 

  6. Bonilla-Rosso G, Steiner T, Wichmann F et al (2020) Honey bees harbor a diverse gut virome engaging in nested strain-level interactions with the microbiota. PNAS 117:7355–7362. https://doi.org/10.1073/pnas.2000228117

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Bosmans L, Pozo M, Verreth C et al (2018a) Hibernation leads to altered gut communities in bumblebee queens (Bombus terrestris). Insects 9:188. https://doi.org/10.3390/insects9040188

    Article  PubMed Central  Google Scholar 

  8. Bosmans L, Pozo MI, Verreth C et al (2018b) Habitat-specific variation in gut microbial communities and pathogen prevalence in bumblebee queens (Bombus terrestris). PLoS ONE 13:e0204612. https://doi.org/10.1371/journal.pone.0204612

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Bossert S, Murray EA, Almeida EAB et al (2019) Combining transcriptomes and ultraconserved elements to illuminate the phylogeny of Apidae. Mol Phylogenet Evol 130:121–131. https://doi.org/10.1016/j.ympev.2018.10.012

    Article  PubMed  Google Scholar 

  10. Brune A, Dietrich C (2015) The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol 69:145–166. https://doi.org/10.1146/annurev-micro-092412-155715

    CAS  Article  PubMed  Google Scholar 

  11. Brysch-Herzberg M (2004) Ecology of yeasts in plant–bumblebee mutualism in Central Europe. FEMS Microbiol Ecol 50:87–100. https://doi.org/10.1016/j.femsec.2004.06.003

    CAS  Article  PubMed  Google Scholar 

  12. Calderone NW (2012) Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS ONE 7:e37235. https://doi.org/10.1371/journal.pone.0037235

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Cameron SA (1989) Temporal patterns of division of labor among workers in the primitively eusocial bumble bee, Bombus griseocollis (Hymenoptera: Apidae). Ethology 80:137–151. https://doi.org/10.1111/j.1439-0310.1989.tb00735.x

    Article  Google Scholar 

  14. Cameron SA, Sadd BM (2020) Global trends in bumble bee health. Annu Rev Entomol 65:209–232. https://doi.org/10.1146/annurev-ento-011118-111847

    CAS  Article  PubMed  Google Scholar 

  15. Cameron SA, Lozier JD, Strange JP et al (2011) Patterns of widespread decline in North American bumble bees. PNAS 108:662–667. https://doi.org/10.1073/pnas.1014743108

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cameron SA, Lim HC, Lozier JD et al (2016) Test of the invasive pathogen hypothesis of bumble bee decline in North America. PNAS 113:4386–4391. https://doi.org/10.1073/pnas.1525266113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Cariveau DP, Powell JE, Koch H et al (2014) Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). ISME J 8:2369–2379. https://doi.org/10.1038/ismej.2014.68

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Carnell JD, Hulse RA, Hughes WOH (2020) A review of nutrition in bumblebees: the effect of caste, life-stage and life history traits. Advances in insect physiology. Elsevier, pp 71–129

    Google Scholar 

  19. Cerqueira AES, Hammer TJ, Moran NA et al (2021) Extinction of anciently associated gut bacterial symbionts in a clade of stingless bees. ISME J. https://doi.org/10.1038/s41396-021-01000-1

    Article  PubMed  Google Scholar 

  20. Colgan TJ, Finlay S, Brown MJF, Carolan JC (2019) Mating precedes selective immune priming which is maintained throughout bumblebee queen diapause. BMC Genomics 20:959. https://doi.org/10.1186/s12864-019-6314-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Costa CP, Duennes MA, Fisher K et al (2020) Transcriptome analysis reveals nutrition- and age-related patterns of gene expression in the fat body of pre-overwintering bumble bee queens. Mol Ecol 29:720–737. https://doi.org/10.1111/mec.15361

    CAS  Article  PubMed  Google Scholar 

  22. Crall JD, Switzer CM, Oppenheimer RL et al (2018) Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation. Science 686:683–686. https://doi.org/10.1126/science.aat1598

    CAS  Article  Google Scholar 

  23. Cremer S, Armitage SAO, Schmid-Hempel P (2007) Social immunity. Curr Biol 17:R693–R702. https://doi.org/10.1016/j.cub.2007.06.008

    CAS  Article  PubMed  Google Scholar 

  24. das Dores-Teixeira A, Marques-Araújo S, Zanuncio JC, Serrão JE (2015) Peritrophic membrane origin in adult bees (Hymenoptera): Immunolocalization. Micron 68:91–97. https://doi.org/10.1016/j.micron.2014.09.009

    CAS  Article  Google Scholar 

  25. Deboutte W, Beller L, Yinda CK et al (2020) Honey-bee–associated prokaryotic viral communities reveal wide viral diversity and a profound metabolic coding potential. PNAS 117:10511–10519. https://doi.org/10.1073/pnas.1921859117

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Decker LE, San Juan PA, Warren ML et al (2020) Higher variability in fungi compared to bacteria in the foraging honey bee gut. bioRxiv. https://doi.org/10.1101/2020.10.20.348128

    Article  Google Scholar 

  27. Dharampal PS, Diaz-Garcia L, Haase MAB et al (2020) Microbial diversity associated with the pollen stores of captive-bred bumble bee colonies. Insects 11:250

    Article  Google Scholar 

  28. Durrer S, Schmid-Hempel P (1994) Shared use of flowers leads to horizontal pathogen transmission. Proc R Soc B 258:299–302. https://doi.org/10.1098/rspb.1994.0176

    Article  Google Scholar 

  29. Ellegaard KM, Brochet S, Bonilla-Rosso G et al (2019) Genomic changes underlying host specialization in the bee gut symbiont Lactobacillus Firm5. Mol Ecol 28:2224–2237. https://doi.org/10.1111/mec.15075

    Article  PubMed  Google Scholar 

  30. Ellegaard KM, Suenami S, Miyazaki R, Engel P (2020) Vast differences in strain-level diversity in the gut microbiota of two closely related honey bee species. Curr Biol 30:2520–2531. https://doi.org/10.1101/2020.01.23.916296

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Engel P, Moran NA (2013) The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev 37:699–735. https://doi.org/10.1111/1574-6976.12025

    CAS  Article  PubMed  Google Scholar 

  32. Estoup A, Scholl A, Pouvreau A, Solignac M (1995) Monoandry and polyandry in bumble bees (Hymenoptera; Bombinae) as evidenced by highly variable microsatellites. Mol Ecol 4:89–94. https://doi.org/10.1111/j.1365-294X.1995.tb00195.x

    CAS  Article  PubMed  Google Scholar 

  33. Figueroa LL, Blinder M, Grincavitch C et al (2019) Bee pathogen transmission dynamics: deposition, persistence and acquisition on flowers. Proc R Soc B 286:20190603. https://doi.org/10.1098/rspb.2019.0603

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fünfhaus A, Ebeling J, Genersch E (2018) Bacterial pathogens of bees. Curr Opin Insect Sci 26:89–96. https://doi.org/10.1016/j.cois.2018.02.008

    Article  PubMed  Google Scholar 

  35. Giacomini JJ, Leslie J, Tarpy DR et al (2018) Medicinal value of sunflower pollen against bee pathogens. Sci Rep 8:14394. https://doi.org/10.1038/s41598-018-32681-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Goulson D (2003) Bumblebees: behaviour and ecology. Oxford University Press

    Google Scholar 

  37. Hammer TJ, Bowers MD (2015) Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 179:1–14. https://doi.org/10.1007/s00442-015-3327-1

    Article  PubMed  Google Scholar 

  38. Hammer M, Menzel R (1995) Learning and memory in the honeybee. J Neurosci 15:1617–1630

    CAS  Article  Google Scholar 

  39. Hammer TJ, Moran NA (2019) Links between metamorphosis and symbiosis in holometabolous insects. Philos Trans R Soc B 374:20190068. https://doi.org/10.1098/rstb.2019.0068

    CAS  Article  Google Scholar 

  40. Hammer TJ, Janzen DH, Hallwachs W et al (2017) Caterpillars lack a resident gut microbiome. PNAS 114:9641–9646. https://doi.org/10.1073/pnas.1707186114

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Hammer TJ, Sanders JG, Fierer N (2019) Not all animals need a microbiome. FEMS Microbiol Lett 366:fnz117. https://doi.org/10.1093/femsle/fnz117

    CAS  Article  PubMed  Google Scholar 

  42. Hammer TJ, Dickerson JC, McMillan WO, Fierer N (2020) Heliconius butterflies host characteristic and phylogenetically structured adult-stage microbiomes. Appl Environ Microbiol 86:e02007-e2020. https://doi.org/10.1128/AEM.02007-20

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Hammer TJ, Le E, Moran NA (2021) Thermal niches of specialized gut symbionts: the case of social bees. Proc R Soc B 288:20201480

    Article  Google Scholar 

  44. Heinrich B (1979) Bumblebee economics. Harvard University Press, Cambridge

    Google Scholar 

  45. Hines HM (2008) Historical biogeography, divergence times, and diversification patterns of bumble bees (Hymenoptera: Apidae: Bombus). Syst Biol 57:58–75. https://doi.org/10.1080/10635150801898912

    Article  Google Scholar 

  46. Holtof M, Lenaerts C, Cullen D, Vanden Broeck J (2019) Extracellular nutrient digestion and absorption in the insect gut. Cell Tissue Res 377:397–414. https://doi.org/10.1007/s00441-019-03031-9

    Article  PubMed  Google Scholar 

  47. Keller A, McFrederick QS, Dharampal P et al (2021) (More than) Hitchhikers through the network: the shared microbiome of bees and flowers. Curr Opin Insect Sci 44:8–15. https://doi.org/10.1016/j.cois.2020.09.007

    Article  PubMed  Google Scholar 

  48. Kešnerová L, Emery O, Troilo M et al (2020) Gut microbiota structure differs between honeybees in winter and summer. ISME J 14:801–814. https://doi.org/10.1038/s41396-019-0568-8

    Article  PubMed  Google Scholar 

  49. Kikuchi Y, Tada A, Musolin DL et al (2016) Collapse of insect gut symbiosis under simulated climate change. Mbio 7:e01578-e1616. https://doi.org/10.1128/mBio.01578-16

    Article  PubMed  PubMed Central  Google Scholar 

  50. Killer J, Kopečný J, Mrázek J et al (2010) Bombiscardovia coagulans gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of bumblebees. Syst Appl Microbiol 33:359–366. https://doi.org/10.1016/j.syapm.2010.08.002

    CAS  Article  PubMed  Google Scholar 

  51. Killer J, Votavová A, Valterová I et al (2014) Lactobacillus bombi sp. nov., from the digestive tract of laboratory-reared bumblebee queens (Bombus terrestris). Int J Syst Evol Microbiol 64:2611–2617. https://doi.org/10.1099/ijs.0.063602-0

    CAS  Article  PubMed  Google Scholar 

  52. Klungness LM, Peng Y-S (1983) A scanning electron microscopic study of pollen loads collected and stored by honeybees. J Apic Res 22:264–271. https://doi.org/10.1080/00218839.1983.11100598

    Article  Google Scholar 

  53. Koch H, Schmid-Hempel P (2011a) Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. PNAS 108:19288–19292. https://doi.org/10.1073/pnas.1110474108

    Article  PubMed  PubMed Central  Google Scholar 

  54. Koch H, Schmid-Hempel P (2011b) Bacterial communities in central European bumblebees: low diversity and high specificity. Microb Ecol 62:121–133. https://doi.org/10.1007/s00248-011-9854-3

    Article  PubMed  Google Scholar 

  55. Koch H, Schmid-Hempel P (2012) Gut microbiota instead of host genotype drive the specificity in the interaction of a natural host-parasite system. Ecol Lett 15:1095–1103. https://doi.org/10.1111/j.1461-0248.2012.01831.x

    Article  PubMed  Google Scholar 

  56. Koch H, Cisarovsky G, Schmid-Hempel P (2012) Ecological effects on gut bacterial communities in wild bumblebee colonies. J Anim Ecol 81:1202–1210. https://doi.org/10.1111/j.1365-2656.2012.02004.x

    Article  PubMed  Google Scholar 

  57. Koch H, Abrol DP, Li J, Schmid-Hempel P (2013) Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. Mol Ecol 22:2028–2044. https://doi.org/10.1111/mec.12209

    CAS  Article  PubMed  Google Scholar 

  58. Koch H, Woodward J, Langat MK et al (2019) Flagellum removal by a nectar metabolite inhibits infectivity of a bumblebee parasite. Curr Biol 29:3494–3500. https://doi.org/10.1016/j.cub.2019.08.037

    CAS  Article  PubMed  Google Scholar 

  59. Kwong WK, Moran NA (2013) Cultivation and characterization of the gut symbionts of honey bees and bumble bees: description of Snodgrassella alvi gen. nov., sp. nov., a member of the family Neisseriaceae of the Betaproteobacteria, and Gilliamella apicola gen. nov., sp. nov., a member of Orbaceae fam. nov., Orbales ord. nov., a sister taxon to the order ‘Enterobacteriales’ of the Gammaproteobacteria. Int J Syst Evol Microbiol 63:2008–2018. https://doi.org/10.1099/ijs.0.044875-0

    CAS  Article  PubMed  Google Scholar 

  60. Kwong WK, Moran NA (2016) Gut microbial communities of social bees. Nat Rev Microbiol 14:374–384. https://doi.org/10.1038/nrmicro.2016.43

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Kwong WK, Engel P, Koch H, Moran NA (2014) Genomics and host specialization of honey bee and bumble bee gut symbionts. PNAS 111:11509–11514. https://doi.org/10.1073/pnas.1405838111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Kwong WK, Mancenido AL, Moran NA (2017a) Immune system stimulation by the native gut microbiota of honey bees. R Soc Open Sci 4:170003. https://doi.org/10.1098/rsos.170003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Kwong WK, Medina LA, Koch H et al (2017b) Dynamic microbiome evolution in social bees. Sci Adv 3:e1600513. https://doi.org/10.1126/sciadv.1600513

    Article  PubMed  PubMed Central  Google Scholar 

  64. Laverty T, Plowright R (1985) Comparative bionomics of temperate and tropical bumble bees with special reference to Bombus ephippiatus (Hymenoptera: Apidae). Can Entomol 117:467–474

    Article  Google Scholar 

  65. Leger L, McFrederick QS (2020) The gut–brain–microbiome axis in bumble bees. Insects 11:517. https://doi.org/10.3390/insects11080517

    Article  PubMed Central  Google Scholar 

  66. Leonard SP, Perutka J, Powell JE et al (2018) Genetic engineering of bee gut microbiome bacteria with a toolkit for modular assembly of broad-host-range plasmids. ACS Synth Biol 7:1279–1290. https://doi.org/10.1021/acssynbio.7b00399

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Leonard SP, Powell JE, Perutka J et al (2020) Engineered symbionts activate honey bee immunity and limit pathogens. Science 367:573–576

    CAS  Article  Google Scholar 

  68. Leonhardt SD, Blüthgen N (2012) The same, but different: pollen foraging in honeybee and bumblebee colonies. Apidologie 43:449–464. https://doi.org/10.1007/s13592-011-0112-y

    Article  Google Scholar 

  69. Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E (2017) Dysbiosis and the immune system. Nat Rev Immunol 17:219–232. https://doi.org/10.1038/nri.2017.7

    CAS  Article  PubMed  Google Scholar 

  70. Lewis Z, Lizé A (2015) Insect behaviour and the microbiome. Curr Opin Insect Sci 9:86–90. https://doi.org/10.1016/j.cois.2015.03.003

    Article  PubMed  Google Scholar 

  71. Lhomme P, Hines HM (2019) Ecology and evolution of cuckoo bumble bees. Ann Ent Soc Am 112:122–140. https://doi.org/10.1093/aesa/say031

    Article  Google Scholar 

  72. Li J, Powell JE, Guo J et al (2015a) Two gut community enterotypes recur in diverse bumblebee species. Curr Biol 25:R652–R653. https://doi.org/10.1016/j.cub.2015.06.031

    CAS  Article  PubMed  Google Scholar 

  73. Li L, Praet J, Borremans W et al (2015b) Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop. Int J Syst Evol Microbiol 65:267–273. https://doi.org/10.1099/ijs.0.068049-0

    CAS  Article  PubMed  Google Scholar 

  74. Liberti J, Engel P (2020) The gut microbiota—brain axis of insects. Curr Opin Insect Sci 39:6–13. https://doi.org/10.1016/j.cois.2020.01.004

    Article  PubMed  Google Scholar 

  75. Lim HC, Chu CC, Seufferheld MJ, Cameron SA (2015) Deep sequencing and ecological characterization of gut microbial communities of diverse bumble bee species. PLoS ONE 10:1–22. https://doi.org/10.1371/journal.pone.0118566

    CAS  Article  Google Scholar 

  76. Loukola OJ, Perry CJ, Coscos L, Chittka L (2017) Bumblebees show cognitive flexibility by improving on an observed complex behavior. Science 355:833–836. https://doi.org/10.1126/science.aag2360

    CAS  Article  PubMed  Google Scholar 

  77. Macfarlane RP, Lipa JJ, Liu HJ (1995) Bumble bee pathogens and internal enemies. Bee World 76:130–148. https://doi.org/10.1080/0005772X.1995.11099259

    Article  Google Scholar 

  78. Mao W, Schuler MA, Berenbaum MR (2017) Disruption of quercetin metabolism by fungicide affects energy production in honey bees (Apis mellifera). PNAS 114:2538–2543. https://doi.org/10.1073/pnas.1614864114

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Martinson VG, Danforth BN, Minckley RL et al (2011) A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 20:619–628. https://doi.org/10.1111/j.1365-294X.2010.04959.x

    Article  PubMed  Google Scholar 

  80. Martinson VG, Moy J, Moran NA (2012) Establishment of characteristic gut bacteria during development of the honeybee worker. Appl Environ Microbiol 78:2830–2840

    CAS  Article  Google Scholar 

  81. McFrederick QS, Thomas JM, Neff JL et al (2017) Flowers and wild megachilid bees share microbes. Microb Ecol 73:188–200. https://doi.org/10.1007/s00248-016-0838-1

    Article  PubMed  Google Scholar 

  82. Meeus I, Mommaerts V, Billiet A et al (2013) Assessment of mutualism between Bombus terrestris and its microbiota by use of microcolonies. Apidologie 44:708–719. https://doi.org/10.1007/s13592-013-0222-9

    CAS  Article  Google Scholar 

  83. Meeus I, Parmentier L, Billiet A et al (2015) 16S rRNA amplicon sequencing demonstrates that indoor-reared bumblebees (Bombus terrestris) harbor a core subset of bacteria normally associated with the wild host. PLoS ONE 10:1–15. https://doi.org/10.1371/journal.pone.0125152

    CAS  Article  Google Scholar 

  84. Michener CD (1974) The social behavior of the bees: a comparative study. Harvard University Press, Cambridge

    Google Scholar 

  85. Miller-Struttmann NE, Geib JC, Franklin JD et al (2015) Functional mismatch in a bumble bee pollination mutualism under climate change. Science 349:1541–1544. https://doi.org/10.1126/science.aab0868

    CAS  Article  PubMed  Google Scholar 

  86. Mockler BK, Kwong WK, Moran NA, Koch H (2018) Microbiome structure influences infection by the parasite Crithidia bombi in bumble bees. Appl Environ Microbiol 84:e02335-e2417. https://doi.org/10.1128/AEM.02335-17

    Article  PubMed  PubMed Central  Google Scholar 

  87. Mohr KI, Tebbe CC (2006) Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ Microbiol 8:258–272. https://doi.org/10.1111/j.1462-2920.2005.00893.x

    CAS  Article  PubMed  Google Scholar 

  88. Moran NA, Ochman H, Hammer TJ (2019) Evolutionary and ecological consequences of gut microbial communities. Annu Rev Ecol Evol Syst 50:451–475. https://doi.org/10.1146/annurev-ecolsys-110617-062453

    Article  PubMed  PubMed Central  Google Scholar 

  89. Näpflin K, Schmid-Hempel P (2016) Immune response and gut microbial community structure in bumblebees after microbiota transplants. Proc R Soc B. https://doi.org/10.1098/rspb.2016.0312

    Article  PubMed  PubMed Central  Google Scholar 

  90. Näpflin K, Schmid-Hempel P (2018a) Host effects on microbiota community assembly. J Anim Ecol 87:331–340. https://doi.org/10.1111/1365-2656.12768

    Article  PubMed  Google Scholar 

  91. Näpflin K, Schmid-Hempel P (2018b) High gut microbiota diversity provides lower resistance against infection by an intestinal parasite in bumblebees. Am Nat 192:131–141. https://doi.org/10.1086/698013

    Article  PubMed  Google Scholar 

  92. Newbold LK, Oliver AE, Cuthbertson L et al (2015) Rearing and foraging affects bumblebee (Bombus terrestris) gut microbiota. Environ Microbiol Rep 7:634–641. https://doi.org/10.1111/1758-2229.12299

    CAS  Article  PubMed  Google Scholar 

  93. Otterstatter MC, Thomson JD (2007) Contact networks and transmission of an intestinal pathogen in bumble bee (Bombus impatiens) colonies. Oecologia 154:411–421. https://doi.org/10.1007/s00442-007-0834-8

    Article  PubMed  Google Scholar 

  94. Palmer-Young EC, Raffel TR, McFrederick QS (2018) pH-mediated inhibition of a bumble bee parasite by an intestinal symbiont. Parasitology 146:380–388. https://doi.org/10.1017/S0031182018001555

    CAS  Article  PubMed  Google Scholar 

  95. Palmer-Young EC, Ngor L, Burciaga Nevarez R et al (2019) Temperature dependence of parasitic infection and gut bacterial communities in bumble bees. Environ Microbiol 21:4706–4723. https://doi.org/10.1111/1462-2920.14805

    Article  PubMed  PubMed Central  Google Scholar 

  96. Parmentier L, Meeus I, Mosallanejad H et al (2016) Plasticity in the gut microbial community and uptake of Enterobacteriaceae (Gammaproteobacteria) in Bombus terrestris bumblebees’ nests when reared indoors and moved to an outdoor environment. Apidologie 47:237–250. https://doi.org/10.1007/s13592-015-0393-7

    Article  Google Scholar 

  97. Parmentier A, Meeus I, Van Nieuwerburgh F et al (2018) A different gut microbial community between larvae and adults of a wild bumblebee nest (Bombus pascuorum). Insect Sci 25:66–74. https://doi.org/10.1111/1744-7917.12381

    CAS  Article  PubMed  Google Scholar 

  98. Pereboom JJM (2000) The composition of larval food and the significance of exocrine secretions in the bumblebee Bombus terrestris. Insectes Soc 47:11–20. https://doi.org/10.1007/s000400050003

    Article  Google Scholar 

  99. Powell JE, Martinson VG, Urban-Mead K, Moran NA (2014) Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl Environ Microbiol 80:7378–7387. https://doi.org/10.1128/AEM.01861-14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. Powell E, Ratnayeke N, Moran NA (2016a) Strain diversity and host specificity in a specialized gut symbiont of honeybees and bumblebees. Mol Ecol 25:4461–4471. https://doi.org/10.1111/mec.13787

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  101. Powell JE, Leonard SP, Kwong WK et al (2016b) Genome-wide screen identifies host colonization determinants in a bacterial gut symbiont. PNAS 113:13887–13892. https://doi.org/10.1073/pnas.1610856113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  102. Powell JE, Eiri D, Moran NA, Rangel J (2018) Modulation of the honey bee queen microbiota: effects of early social contact. PLoS ONE 13:e0200527. https://doi.org/10.1371/journal.pone.0200527

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. Pozo MI, Bartlewicz J, van Oystaeyen A et al (2018) Surviving in the absence of flowers: do nectar yeasts rely on overwintering bumblebee queens to complete their annual life cycle? FEMS Microbiol Ecol 94:fiy196. https://doi.org/10.1093/femsec/fiy196

    CAS  Article  Google Scholar 

  104. Pozo MI, Kemenade G, Oystaeyen A et al (2020) The impact of yeast presence in nectar on bumble bee behavior and fitness. Ecol Monogr 90:e0193. https://doi.org/10.1002/ecm.1393

    Article  Google Scholar 

  105. Pozo MI, Mariën T, van Kemenade G et al (2021) Effects of pollen and nectar inoculation by yeasts, bacteria or both on bumblebee colony development. Oecologia 195:689–703. https://doi.org/10.1007/s00442-021-04872-4

    Article  PubMed  Google Scholar 

  106. Praet J, Meeus I, Cnockaert M et al (2015a) Bifidobacterium commune sp. nov. isolated from the bumble bee gut. Antonie Van Leeuwenhoek 107:1307–1313. https://doi.org/10.1007/s10482-015-0425-3

    CAS  Article  PubMed  Google Scholar 

  107. Praet J, Meeus I, Cnockaert M et al (2015b) Novel lactic acid bacteria isolated from the bumble bee gut: Convivina intestini gen. nov., sp. nov., Lactobacillus bombicola sp. nov., and Weissella bombi sp. nov. Antonie Van Leeuwenhoek 107:1337–1349. https://doi.org/10.1007/s10482-015-0429-z

    CAS  Article  PubMed  Google Scholar 

  108. Praet J, Brandt ED, Aerts M et al (2016) Apibacter mensalis sp. nov.: a rare member of the bumblebee gut microbiota. Int J Syst Evol Microbiol 66:1645–1651. https://doi.org/10.1099/ijsem.0.000921

    CAS  Article  PubMed  Google Scholar 

  109. Praet J, Parmentier A, Schmid-Hempel R et al (2018) Large-scale cultivation of the bumblebee gut microbiota reveals an underestimated bacterial species diversity capable of pathogen inhibition. Environ Microbiol 20:214–227. https://doi.org/10.1111/1462-2920.13973

    CAS  Article  PubMed  Google Scholar 

  110. Raymann K, Coon KL, Shaffer Z et al (2018) Pathogenicity of Serratia marcescens strains in honey bees. Mbio 9:e01649-e1718. https://doi.org/10.1128/mBio.01649-18

    Article  PubMed  PubMed Central  Google Scholar 

  111. Rothman JA, Leger L, Graystock P et al (2019) The bumble bee microbiome increases survival of bees exposed to selenate toxicity. Environ Microbiol 21:3417–3429. https://doi.org/10.1111/1462-2920.14641

    CAS  Article  Google Scholar 

  112. Rothman J, Russell K, Leger L et al (2020) The direct and indirect effects of environmental toxicants on the health of bumble bees and their microbiomes. Proc R Soc B 287:20200980

    CAS  Article  Google Scholar 

  113. Sadd BM, Schmid-Hempel P (2006) Insect immunity shows specificity in protection upon secondary pathogen exposure. Curr Biol 16:1206–1210. https://doi.org/10.1016/j.cub.2006.04.047

    CAS  Article  PubMed  Google Scholar 

  114. Sanders JG, Łukasik P, Frederickson ME et al (2017) Dramatic differences in gut bacterial densities correlate with diet and habitat in rainforest ants. Integr Comp Biol 57:705–722. https://doi.org/10.1093/icb/icx088

    CAS  Article  PubMed  Google Scholar 

  115. Sauers LA, Sadd BM (2019) An interaction between host and microbe genotypes determines colonization success of a key bumble bee gut microbiota member. Evolution 73:2333–2342. https://doi.org/10.1111/evo.13853

    Article  PubMed  PubMed Central  Google Scholar 

  116. Schaeffer RN, Mei YZ, Andicoechea J et al (2017) Consequences of a nectar yeast for pollinator preference and performance. Funct Ecol 31:613–621. https://doi.org/10.1111/1365-2435.12762

    Article  Google Scholar 

  117. Schmid-Hempel P (2001) On the evolutionary ecology of host-parasite interactions: addressing the question with regard to bumblebees and their parasites. Naturwissenschaften 88:147–158. https://doi.org/10.1007/s001140100222

    CAS  Article  PubMed  Google Scholar 

  118. Schwarz RS, Moran NA, Evans JD (2016) Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers. PNAS 113:9345–9350. https://doi.org/10.1073/pnas.1606631113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  119. Snowdon JA, Cliver DO (1996) Microorganisms in honey. Int J Food Microbiol 31:1–26

    CAS  Article  Google Scholar 

  120. Sookhan N, Lorenzo A, Tatsumi S et al (2020) Linking bacterial diversity to floral identity in the bumble bee pollen basket. Environ DNA 00:1–12

    Google Scholar 

  121. Steele MI, Kwong WK, Whiteley M, Moran NA (2017) Diversification of type VI secretion system toxins reveals ancient antagonism among bee gut microbes. Mbio 8:e01630-e1717. https://doi.org/10.1128/mBio.01630-17

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  122. Tian L, Rahman SR, Ezray BD et al (2019) A homeotic shift late in development drives mimetic color variation in a bumble bee. PNAS 116:11857–11865. https://doi.org/10.1073/pnas.1900365116

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  123. Vannette RL (2020) The floral microbiome: plant, pollinator, and microbial perspectives. Annu Rev Ecol Evol Syst 51:363–386. https://doi.org/10.1146/annurev-ecolsys-011720-013401

    Article  Google Scholar 

  124. Velthuis HHW, van Doorn A (2006) A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37:421–451. https://doi.org/10.1051/apido:2006019

    Article  Google Scholar 

  125. Vernier CL, Chin IM, Adu-Oppong B et al (2020) The gut microbiome defines social group membership in honey bee colonies. Sci Adv 6:eabd3431. https://doi.org/10.1126/sciadv.abd3431

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  126. Wang L, Wu J, Li K et al (2019) Dynamic changes of gut microbial communities of bumble bee queens through important life stages. mSystems 4:e00631-e719. https://doi.org/10.1128/mSystems.00631-19

    Article  PubMed  PubMed Central  Google Scholar 

  127. Williams PH, Osborne JL (2009) Bumblebee vulnerability and conservation world-wide. Apidologie 40:367–387. https://doi.org/10.1051/apido/2009025

    Article  Google Scholar 

  128. Williams P, Colla S, Xie Z (2009) Bumblebee vulnerability: common correlates of winners and losers across three continents. Conserv Biol 23:931–940. https://doi.org/10.1111/j.1523-1739.2009.01176.x

    Article  PubMed  Google Scholar 

  129. Wintermantel D, Locke B, Andersson GKS et al (2018) Field-level clothianidin exposure affects bumblebees but generally not their pathogens. Nat Commun 9:5446. https://doi.org/10.1038/s41467-018-07914-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  130. Woodard SH, Bloch GM, Band MR, Robinson GE (2014) Molecular heterochrony and the evolution of sociality in bumblebees (Bombus terrestris). Proc R Soc B 281:20132419. https://doi.org/10.1098/rspb.2013.2419

    Article  PubMed  PubMed Central  Google Scholar 

  131. Zanette LRS, Miller SDL, Faria CMA et al (2014) Bumble bee workers drift to conspecific nests at field scales. Ecol Entomol 39:347–354. https://doi.org/10.1111/een.12109

    Article  Google Scholar 

  132. Zhang Z, Huang M, Qiu L et al (2020) Diversity and functional analysis of Chinese bumblebee gut microbiota reveal the metabolic niche and antibiotic resistance variation of Gilliamella. Insect Sci 28:1–13. https://doi.org/10.1111/1744-7917.12770

    CAS  Article  Google Scholar 

  133. Zheng H, Nishida A, Kwong WK et al (2016) Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. Mbio 7:e01326-e1416. https://doi.org/10.1128/mBio.01326-16

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  134. Zheng H, Powell JE, Steele MI et al (2017) Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. PNAS 114:4775–4780. https://doi.org/10.1073/pnas.1701819114

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  135. Zheng H, Steele MI, Leonard SP et al (2018) Honey bees as models for gut microbiota research. Lab Anim 47:317–325. https://doi.org/10.1038/s41684-018-0173-x

    Article  Google Scholar 

  136. Zheng H, Perreau J, Powell JE et al (2019) Division of labor in honey bee gut microbiota for plant polysaccharide digestion. PNAS 116:25909–25916. https://doi.org/10.1073/pnas.1916224116

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  137. Zheng J, Wittouck S, Salvetti E et al (2020) A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 70:2782–2858. https://doi.org/10.1099/ijsem.0.004107

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank G. Espinosa for contributing one of the micrographs, F. Muth for helpful discussions, K. Hammond for assistance preparing figures, and the reviewers for feedback that improved the manuscript.

Funding

Support was provided by a USDA NIFA Postdoctoral Fellowship to TJH (No. 2018-08156), UT Undergraduate Research Fellowships to EL and ANM, and a NIH Grant to NAM (No. R35GM131738).

Author information

Affiliations

Authors

Contributions

TJH and NAM conceptualized the project; EL contributed to the literature review; ANM contributed to imaging and figures; TJH drafted the manuscript, and EL, ANM, and NAM provided input and critical revisions.

Corresponding author

Correspondence to T. J. Hammer.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Ethics approval

Imaging used commercial Bombus impatiens, which are not subject to ethical approval requirements.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hammer, T.J., Le, E., Martin, A.N. et al. The gut microbiota of bumblebees. Insect. Soc. (2021). https://doi.org/10.1007/s00040-021-00837-1

Download citation

Keywords

  • Symbiosis
  • Bombus
  • Apis
  • Microbiome
  • Bacteria