Skip to main content

Cuticular hydrocarbons as cues of caste and sex in the German wasp Vespula germanica

Abstract

The complex system of communication used by social insects is responsible for their success on Earth. Cuticular hydrocarbons (CHCs) are considered the most commonly used form of communication among social insects. The best-known function of CHCs is to distinguish nestmates, providing cues to the whole colony to identify potential threats. In some species, CHCs function as queen pheromones, which contribute to the queens’ ability to regulate the reproductive division of labor. Additionally, differences of CHCs were described in castes and they are also important in sex recognition. Here, we reinvestigated the chemical composition on the cuticle of German wasp Vespula germanica and we found that proportions of linear alkanes were more abundant in the cuticle of queens than other castes. Chemical analysis between caste and sex, including data of virgin queens and males, showed that each group possesses different compositions on their cuticle, being mostly quantitative differences. Thus, individuals of V. germanica may recognize and discriminate caste and sex through subtle chemical variations, or alternatively, based on templates used in nestmate recognition. The chemical analysis provides correlative evidence of CHCs being used as cues in the chemical communication of this species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data availability

Data was deposited in the supplementary section.

References

  1. Andrade-Silva ACR, Nascimento FS (2015) Reproductive regulation in an orchid bee: social context, fertility and chemical signaling. Anim Behav 106:43–49. https://doi.org/10.1016/j.anbehav.2015.05.004

    Article  Google Scholar 

  2. Ayasse M, Paxton RJ, Tengö J (2001) Mating behavior and chemical communication in the order hymenoptera. Annu Rev Entomol 46:31–78. https://doi.org/10.1146/annurev.ento.46.1.31

    CAS  Article  PubMed  Google Scholar 

  3. Beani L, Calloni C (1991) Leg tegumental glands and male rubbing behavior at leks in Polistes dominulus (Hymenoptera: Vespidae). J Insect Behav 4:449–462. https://doi.org/10.1007/BF01049330

    Article  Google Scholar 

  4. Blomquist GJ, Bagnères AG (eds) (2010) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge

    Google Scholar 

  5. Bonckaert W, Drijfhout FP, d’Ettorre P et al (2012) Hydrocarbon signatures of egg maternity, caste membership and reproductive status in the common wasp. J Chem Ecol 38:42–51. https://doi.org/10.1007/s10886-011-0055-9

    CAS  Article  PubMed  Google Scholar 

  6. Brown WV, Spradbery JP, Lacey MJ (1991) Changes in the cuticular hydrocarbon composition during development of the social wasp, Vespula germanica (Hymenoptera, Vespidae). Comp Biochem Phys B 99:553–562. https://doi.org/10.1016/0305-0491(91)90337-d

    Article  Google Scholar 

  7. Brown RL, El-Sayed AM, Suckling DM, Stringer LD, Beggs JR (2013) Vespula vulgaris (Hymenoptera: Vespidae) gynes use a sex pheromone to attract males. Can Entomol 145:389–397. https://doi.org/10.4039/tce.2013.8

    Article  Google Scholar 

  8. Butts DP, Espelie KE, Hermann HR (1991) Cuticular hydrocarbons of four species of social wasps in the subfamily vespinae: Vespa crabro L., Dolichovespula maculata (L.), Vespula squamosa (Drury), and Vespula maculifrons (Buysson). Comp Biochem Physiol Part B Biochem 99:87–91. https://doi.org/10.1016/0305-0491(91)90012-3

    Article  Google Scholar 

  9. Butts DP, Camann MA, Espelie KE (1995) Workers and queens of the European hornet Vespa crabro L. have colony-specific cuticular hydrocarbon profiles (Hymenoptera: Vespidae). Insectes Soc 42:45–55. https://doi.org/10.1007/BF01245698

    Article  Google Scholar 

  10. Cini A, Cappa F, Pepiciello I, Platania L, Dapporto L, Cervo R (2019) Sight in a clique, scent in society: plasticity in the use of nestmate recognition cues along colony development in the social wasp Polistes dominula. Front Ecol Evol 7:444. https://doi.org/10.3389/fevo.2019.00444

    Article  Google Scholar 

  11. Conte YL, Hefetz A (2008) Primer pheromones in social hymenoptera. Annu Rev Entomol 53:523–542. https://doi.org/10.1146/annurev.ento.52.110405.091434

    CAS  Article  PubMed  Google Scholar 

  12. D’Adamo P, Corley J, Sackmann P, Lozada M (2000) Local enhancement in the wasp Vespula germanica: are visual cues all that matter? Insectes Soc 47:289–291. https://doi.org/10.1007/PL00001717

    Article  Google Scholar 

  13. da Silva RC, Prato A, Oi CA, Turatti ICC, Do Nascimento FS (2020) Dominance hierarchy, ovarian activity and cuticular hydrocarbons in the primitively eusocial wasp Mischocyttarus cerberus (Vespidae, Polistinae, Mischocyttarini). J Chem Ecol 46:835–844. https://doi.org/10.1007/s10886-020-01206-1

    CAS  Article  PubMed  Google Scholar 

  14. da Silva RC, Van Meerbeeck L, do Nascimento FS, Wenseleers T, Oi CA, (2021) Close-range cues used by males of Polistes dominula in sex discrimination. Sci Nat 108:1–16. https://doi.org/10.1007/s00114-021-01730-4

    CAS  Article  Google Scholar 

  15. Derstine NT, Ohler B, Jimenez SI, Landolt P, Gries G (2017) Evidence for sex pheromones and inbreeding avoidance in select North American yellowjacket species. Entomol Exp Appl 164:35–44. https://doi.org/10.1111/eea.12591

    CAS  Article  Google Scholar 

  16. Derstine NT, Gries R, Zhai H, Jimenez SI, Gries G (2018) Cuticular hydrocarbons determine sex, caste, and nest membership in each of four species of yellowjackets (Hymenoptera: Vespidae). Insectes Soc 65:581–591. https://doi.org/10.1007/s00040-018-0649-0

    Article  Google Scholar 

  17. Holman L, Lanfear R, D’Ettorre P (2013) The evolution of queen pheromones in the ant genus Lasius. J Evol Biol 26:1549–1558. https://doi.org/10.1111/jeb.12162

    CAS  Article  PubMed  Google Scholar 

  18. Holman L, Hanley B, Millar JG (2016) Highly specific responses to queen pheromone in three Lasius ant species. Behav Ecol Sociobiol 70:387–392. https://doi.org/10.1007/s00265-016-2058-6

    Article  Google Scholar 

  19. Hoover SER, Keeling CI, Winston ML, Slessor KN (2003) The effect of queen pheromones on worker honey bee ovary development. Naturwissenschaften 90:477–480. https://doi.org/10.1007/s00114-003-0462-z

    CAS  Article  PubMed  Google Scholar 

  20. Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393. https://doi.org/10.1146/annurev.ento.50.071803.130359

    CAS  Article  PubMed  Google Scholar 

  21. Kasper ML, Reeson AF, Cooper SJB, Perry KD, Austin AD (2004) Assessment of prey overlap between a native (Polistes humilis) and an introduced (Vespula germanica) social wasp using morphology and phylogenetic analyses of 16S rDNA. Mol Ecol 13:2037–2048. https://doi.org/10.1111/j.1365-294X.2004.02193.x

    CAS  Article  PubMed  Google Scholar 

  22. Keller L, Nonacs P (1993) The role of queen pheromones in social insects: queen control or queen signal? Anim Behav 45(4):787–794

    Article  Google Scholar 

  23. Leonhardt SD, Menzel F, Nehring V, Schmitt T (2016) Ecology and evolution of communication in social insects. Cell 164:1277–1287. https://doi.org/10.1016/j.cell.2016.01.035

    CAS  Article  PubMed  Google Scholar 

  24. Litte M (1979) Mischocyttarus flavitarsis in Arizona: social and nesting biology of a polistine wasp. Z Tierpsychol 50:282–312. https://doi.org/10.1111/j.1439-0310.1979.tb01033.x

    Article  Google Scholar 

  25. Loope KJ, Millar JG, Rankin EEW (2018) Weak nestmate discrimination behavior in native and invasive populations of a yellowjacket wasp (Vespula pensylvanica). Biol Invasions 20:3431–3444. https://doi.org/10.1007/s10530-018-1783-3

    Article  Google Scholar 

  26. Mant J, Brändli C, Vereecken NJ, Schulz CM, Francke W, Schiestl FP (2005) Cuticular hydrocarbons as sex pheromone of the bee Colletes cunicularius and the key to its mimicry by the sexually deceptive orchid, Ophrys exaltata. J Chem Ecol 31:1765–1787. https://doi.org/10.1007/s10886-005-5926-5

    CAS  Article  PubMed  Google Scholar 

  27. Martin SJ, Vitikainen E, Helanterä H, Drijfhout FP (2008) Chemical basis of nest-mate discrimination in the ant Formica exsecta. Proc R Soc B Biol Sci 275:1271–1278. https://doi.org/10.1098/rspb.2007.1708

    CAS  Article  Google Scholar 

  28. Masciocchi M, Angeletti B, Corley JC, Martínez AS (2020) Drone aggregation behavior in the social wasp Vespula germanica (Hymenoptera: Vespidae): effect of kinship and density. Sci Rep 10:1–7. https://doi.org/10.1038/s41598-020-64232-9

    CAS  Article  Google Scholar 

  29. Mitra A, Palavalli Nettimi R, Ramachandran A et al (2015) Males and females of the social wasp Ropalidia marginata do not differ in their cuticular hydrocarbon profiles and do not seem to use any long-distance volatile mate attraction cues. Insectes Soc 62:281–289. https://doi.org/10.1007/s00040-015-0408-4

    Article  Google Scholar 

  30. Oi CA, Van Oystaeyen A, Caliari Oliveira R, Millar JG, Verstrepen KJ, van Zweden JS, Wenseleers T (2015a) Dual effect of wasp queen pheromone in regulating insect sociality. Curr Biol 25:1638–1640. https://doi.org/10.1016/j.cub.2015.04.040

    CAS  Article  PubMed  Google Scholar 

  31. Oi CA, van Zweden JS, Oliveira RC, Van Oystaeyen A, Nascimento FS, Wenseleers T (2015b) The origin and evolution of social insect queen pheromones: novel hypotheses and outstanding problems. BioEssays 37:808–821. https://doi.org/10.1002/bies.201400180

    CAS  Article  PubMed  Google Scholar 

  32. Oksanen J, Kindt R, Legendre P, O'Hara B, Simpson GL, Stevens MHH, Wagner H (2008) The vegan package. Community Ecol Packag 190

  33. Ono M, Sasaki M (1987) Sex pheromones and their cross-activities in six Japanese sympatric species of the genus Vespa. Insectes Soc 34:252–260. https://doi.org/10.1007/BF02224357

    Article  Google Scholar 

  34. Paulmier I, Bagnères AG, Afonso CM, Dusticier G, Rivière G, Clément JL (1999) Alkenes as a sexual pheromone in the alfalfa leaf-cutter bee Megachile rotundata. J Chem Ecol 25:471–490. https://doi.org/10.1023/A:1020993518226

    CAS  Article  Google Scholar 

  35. Peterson MA, Dobler S, Larson EL, Juárez D, Schlarbaum T, Monsen KJ, Francke W (2007) Profiles of cuticular hydrocarbons mediate male mate choice and sexual isolation between hybridizing Chrysochus (Coleoptera: Chrysomelidae). Chemoecology 17:87–96. https://doi.org/10.1007/s00049-007-0366-z

    CAS  Article  Google Scholar 

  36. Post DC, Jeanne RL (1984) Venom as an interspecific sex pheromone, and species recognition by a cuticular pheromone in Paper Wasps (Polistes, Hymenoptera: Vespidae). Physiol Entomol 9:65–75. https://doi.org/10.1111/j.1365-3032.1984.tb00682.x

    Article  Google Scholar 

  37. R Core Team (2018) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org

  38. Signorotti L, d’Ettorre P, Sguanci G, Cervo R (2015) Pupal experience and nestmate recognition in Polistes dominula wasps. Insectes Soc 62:433–441. https://doi.org/10.1007/s00040-015-0422-6

    Article  Google Scholar 

  39. Simmons LW, Alcock J, Reeder A (2003) The role of cuticular hydrocarbons in male attraction and repulsion by female Dawson’s burrowing bee, Amegilla dawsoni. Anim Behav 66:677–685. https://doi.org/10.1006/anbe.2003.2240

    Article  Google Scholar 

  40. Slessor KN, Kaminski LA, King GGS, Borden JH, Winston ML (1988) Semiochemical basis of the retinue response to queen honey bees. Nature 332:354–356

    CAS  Article  Google Scholar 

  41. Spradbery JP, Maywald GF (1992) The distribution of the European or German wasp, Vespula germanica (Hymenoptera, Vespidae), in Australia—past, present and future. Aust J Zool 40:495–510. https://doi.org/10.1071/zo9920495

    Article  Google Scholar 

  42. Tannure-Nascimento IC, Nascimento FS, Zucchi R (2008) The look of royalty: visual and odour signals of reproductive status in a paper wasp. Proc R Soc B Biol Sci 275:2555–2561. https://doi.org/10.1098/rspb.2008.0589

    Article  Google Scholar 

  43. Thomas ML, Simmons LW (2008) Sexual dimorphism in cuticular hydrocarbons of the Australian field cricket Teleogryllus oceanicus (Orthoptera: Gryllidae). J Insect Physiol 54:1081–1089. https://doi.org/10.1016/j.jinsphys.2008.04.012

    CAS  Article  PubMed  Google Scholar 

  44. Tokoro M, Makino S (2011) Colony and caste specific cuticular hydrocarbon profiles in the common Japanese hornet, Vespa analis (Hymenoptera, Vespidae). Japan Agric Res Q 45:277–283. https://doi.org/10.6090/jarq.45.277

    CAS  Article  Google Scholar 

  45. Van Oystaeyen A, Oliveira RC, Holman L, van Zweden JS, Romero C, Oi CA, d’Ettorre P, Khalesi M, Billen J, Wäckers F, Millar JG, Wenseleers T (2014) Conserved class of queen pheromones stops social insect workers from reproducing. Science 343:287–291. https://doi.org/10.5061/dryad.cg4qp

    Article  PubMed  Google Scholar 

  46. van Zweden JS, d’Ettorre P (2010) Nestmate recognition in social insects and the role of hydrocarbons insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge Univ Press, Cambridge, pp 222–243

    Book  Google Scholar 

  47. Ward D, Honan P, Lefoe G (2002) Colony structure and nest characteristics of European wasps, Vespula germanica (F.) (Hymenoptera:Vespidae), in Victoria Australia. Aust J Entomol 41:306–309. https://doi.org/10.1046/j.1440-6055.2002.00308.x

    Article  Google Scholar 

  48. Wickham H, Chang W, Wickham MH (2016) Package ‘ggplot2’. create elegant data visualisations using the grammar of graphics. Version 2:1–189

    Google Scholar 

Download references

Acknowledgements

We would like to thank the two anonymous reviewers for their comments and suggestions on earlier versions of this manuscript.

Funding

This study was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and Grant 2018/22461-3 São Paulo Research Foundation (FAPESP) to RCS. Additional funding was provided from Bilateral grant FWO-FAPESP to CAO, FSN and TW (process: 2018/10996-0 FAPESP and FWO: GOF8319N). Furthermore, Research Foundation Flanders to CAO (postdoctoral fellowship FWO-12V6318N). Conselho Nacional de Desenvolvimento Científico e Tecnológico also financially supported a productivity Grant to FSN (307702/2018-9). RLB was funded by the Ministry for Primary Industries (SFF 405195) and the Ministry for Business, Innovation and Employment SSIF.

Author information

Affiliations

Authors

Contributions

RCS and CAO contributed to study conceptualization and design. Material preparation, data collection and analyses were performed by RCS and CAO. The first draft of the manuscript was written by RCS and CAO. All authors commented and edited the previous versions of the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to R. C. da Silva.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (CSV 35 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Silva, R.C., Brown, R.L., do Nascimento, F.S. et al. Cuticular hydrocarbons as cues of caste and sex in the German wasp Vespula germanica. Insect. Soc. 68, 261–276 (2021). https://doi.org/10.1007/s00040-021-00817-5

Download citation

Keywords

  • Cuticular hydrocarbons
  • Vespinae wasps
  • GCMS
  • Chemical communication