Skip to main content

Color discrimination and preference in the fire ant Solenopsis invicta Buren

Abstract

Ants generally use chemoreception more than vision to obtain information about their environment. However, available genome sequences suggest that color vision is possibly widespread in ants. In this study, responses of workers of the fire ant Solenopsis invicta Buren in dual choice conditions for differently colored glass bead pairs were tested. Workers from ten colonies were randomly selected and allowed to perform digging behavior in an apparatus filled with colored glass beads in paired choice tests for 1 h. In the experimental group, workers dug in light conditions, while in the control group, workers dug in the dark. Glass beads consisted of five colors: blue, green, yellow, orange, and red. The number of glass beads brought to the surface was recorded and used as indication of preference of workers. Results indicated that workers significantly preferred one or more colors over alternatives and they had a general preference for relatively longer wavelengths compared to shorter wavelengths. Comparison of the estimated absorbed light intensity with the bead choices showed that workers generally preferred beads that transmitted less light. However, although the absorbed intensity was the same for blue and green beads, the workers had a significant preference for green beads, thereby clearly showing color discrimination. It was also observed that workers dug more in the light compared to the dark conditions. Results of this study can be used to improve the attractiveness of fire ant baits by exploiting their color preferences. The possibility of S. invicta using color vision and areas to further explore are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Adams CT (1986) Agricultural and medical impact of the imported fire ants. In: Lofgren CS, Vander Meer RK (eds) Fire ants and leaf-cutting ants: biology and management. Westview Press, Boulder, pp 48–57

    Google Scholar 

  • Aksoy V, Camlitepe Y (2012) Behavioural analysis of chromatic and achromatic vision in the ant Formica cunicularia (Hymenoptera: Formicidae). Vis Res 67:28–36

    PubMed  Google Scholar 

  • Aksoy V, Camlitepe Y (2014) A behavioral analysis of achromatic cue perception by the ant Cataglyphis aenescens (Hymenoptera: Formicidae). Turk J Zool 38:199–208

    Google Scholar 

  • Aksoy V, Camlitepe Y (2018) Spectral sensitivies of ants—a review. Anim Biol 68:55–73

    Google Scholar 

  • Allen C, Epperson D, Garmestani A (2004) Red imported fire ant impacts on wildlife: a decade of research. Am Midl Nat 152:88–103

    Google Scholar 

  • Aquino M, Dias AM, Borges M, Moraes MCB, Laumann RA (2012) Influence of visual cues on host searching and learning behaviour of the egg parasitoids Telenomus podisi and Trissolcus basalis. Entomol Exp Appl 145:162–174

    Google Scholar 

  • Ascunce MS et al (2011) Global invasion history of the fire ant Solenopsis invicta. Science 331:1066–1068

    CAS  PubMed  Google Scholar 

  • Baker GT, Ma PW (2006) Morphology and number of ommatidia in the compound eyes of Solenopsis invicta, Solenopsis richteri, and their hybrid (Hymenoptera: Formicidae). Zool Anz 245:121–125

    Google Scholar 

  • Banks AN, Srygley RB (2003) Orientation by magnetic field in leaf-cutter ants, Atta colombica (Hymenoptera: Formicidae). Ethology 109:835–846

    Google Scholar 

  • Barbero F, Patricelli D, Witek M, Balletto E, Casacci L, Sala M, Bonelli S (2012) Myrmica ants and their butterfly parasites with special focus on the acoustic communication. Psyche 2012:1–11

    Google Scholar 

  • Barr CL (2005) Broadcast baits for fire ant control. Texas cooperative extension B-6099. Texas A&M University, College Station

    Google Scholar 

  • Bernard GD, Remington CL (1991) Color vision in Lycaena butterflies: spectral tuning of receptor arrays in relation to behavioral ecology. P Natl Acad Sci USA 88:2783–2787

    CAS  Google Scholar 

  • Bernstein S, Finn C (1971) Ant compound eye: size-related ommatidium differences within a single wood ant nest. Experientia 27:708–710

    CAS  PubMed  Google Scholar 

  • Bowens SR, Glatt DP, Pratt SC (2013) Visual navigation during colony emigration by the ant Temnothorax rugatulus. PLoS One 8:e64367. https://doi.org/10.1371/journal.pone.0064367

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Briscoe AD (2002) Homology modeling suggests a functional role for parallel amino acid substitutions between bee and butterfly red-and green-sensitive opsins. Mol Biol Evol 19:983–986

    CAS  PubMed  Google Scholar 

  • Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510

    CAS  PubMed  Google Scholar 

  • Bruzzone OA, Corley JC (2011) Which is the best experimental design in animal choice tests? Anim Behav 82:161–169

    Google Scholar 

  • Camlitepe Y, Aksoy V (2010) First evidence of fine colour discrimination ability in ants (Hymentopera: Formicidae). J Exp Biol 213:72–77

    CAS  PubMed  Google Scholar 

  • Camlitepe Y, Stradling DJ (1995) Wood ants orient to magnetic fields. P Roy Soc Lond B Bio 261:37–41

    Google Scholar 

  • Camlitepe Y, Aksoy V, Uren N, Yilmaz A, Becenen I (2005) An experimental analysis on the magnetic field sensitivity of the black-meadow ant Formica pratensis Retzius (Hymenoptera: Formicidae). Acta Biol Hung 56:215–224

    CAS  PubMed  Google Scholar 

  • Cammaerts M-C, Cammaerts D (2014) Comparative outlook over physiological and ecological characteristics of three closely-related Myrmica species. Biologia 69:1051–1058

    Google Scholar 

  • Casacci LP, Thomas JA, Sala M, Treanor D, Bonelli S, Balletto E, Schönrogge K (2013) Ant pupae employ acoustics to communicate social status in their colony’s hierarchy. Curr Biol 23:323–327

    CAS  PubMed  Google Scholar 

  • Chen T-Y, Chu C-C, Fitzgerald G, Natwick ET, Henneberry TJ (2004) Trap evaluations for thrips (Thysanoptera: Thripidae) and hoverflies (Diptera: Syrphidae). Environ Entomol 33:1416–1420

    Google Scholar 

  • Chittka L, Waser NM (1997) Why red flowers are not invisible to bees. Isr J Plant Sci 45:169–183

    Google Scholar 

  • Clarke D, Whitney H, Sutton G, Robert D (2013) Detection and learning of floral electric fields by bumblebees. Science 340:66–69

    CAS  PubMed  Google Scholar 

  • Cocroft RB, Rodríguez RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55:323–334

    Google Scholar 

  • Cokl A, Virant-Doberlet M (2003) Communication with substrate-borne signals in small plant-dwelling insects. Annu Rev Entomol 48:29–50

    CAS  PubMed  Google Scholar 

  • d’Ettorre P, Lenoir A (2010) Nestmate recognition. In: Lach L, Parr CL, Abbott KL (eds) Ant ecology. Oxford University Press, New York, pp 194–209

    Google Scholar 

  • Dacke M, Nilsson D-E, Scholtz CH, Byrne M, Warrant EJ (2003) Animal behaviour: insect orientation to polarized moonlight. Nature 424:33

    CAS  PubMed  Google Scholar 

  • De Bruyne M, Baker T (2008) Odor detection in insects: volatile codes. J Chem Ecol 34:882–897

    CAS  PubMed  Google Scholar 

  • De Ibarra NH, Vorobyev M, Menzel R (2014) Mechanisms, functions and ecology of colour vision in the honeybee. J Comp Physiol A 200:411–433

    Google Scholar 

  • Demirel N, Cranshaw W (2006) Relative attraction of color traps and plant extracts to the false chinch bug Nysius raphanus and its parasitoid, Phasia occidentis, on brassica crops in Colorado. Phytoparasitica 34:197–203. https://doi.org/10.1007/bf02981320

    Article  Google Scholar 

  • Depickère S, Fresneau D, Deneubourg J-L (2004) The influence of red light on the aggregation of two castes of the ant, Lasius niger. J Insect Physiol 50:629–635

    PubMed  Google Scholar 

  • Döring TF, Skellern M, Watts N, Cook SM (2012) Colour choice behaviour in the pollen beetle Meligethes aeneus (Coleoptera: Nitidulidae). Physiol Entomol 37:360–378

    Google Scholar 

  • Farnier K, Dyer AG, Steinbauer MJ (2014) Related but not alike: not all Hemiptera are attracted to yellow. Front Ecol Evol 2:67. https://doi.org/10.3389/fevo.2014.00067

    Article  Google Scholar 

  • Gautrais J, Jm Buhl, Valverde S, Kuntz P, Theraulaz G (2014) The role of colony size on tunnel branching morphogenesis in ant nests. PLoS One 9:e109436

    PubMed  PubMed Central  Google Scholar 

  • Godzinska EJ, Korczynska J (1997) Digging behaviour and responses to photic and gravitational cues as elements of escape behaviour of bumblebees. Acta Neurobiol Exp 57:59–70

    CAS  Google Scholar 

  • Greene MJ, Gordon DM (2007) Structural complexity of chemical recognition cues affects the perception of group membership in the ants Linephithema humile and Aphaenogaster cockerelli. J Exp Biol 210:897–905

    CAS  PubMed  Google Scholar 

  • Gronenberg W (2001) Subdivision of hymenopteran mushroom body calyces by their afferent supply. J Comp Neur 436:474–489

    Google Scholar 

  • Gronenberg W (2008) Structure and function of ant (Hymenoptera: Formicidae) brains: strength in numbers. Myrmecol News 11:25–36

    Google Scholar 

  • Hallem EA, Dahanukar A, Carlson JR (2006) Insect odor and taste receptors. Annu Rev Entomol 51:113–135

    CAS  PubMed  Google Scholar 

  • Hickling R, Brown RL (2000) Analysis of acoustic communication by ants. J Acoust Soc Am 108:1920–1929

    CAS  PubMed  Google Scholar 

  • Hölldobler B (1999) Multimodal signals in ant communication. J Comp Physiol A 184:129–141

    Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge

    Google Scholar 

  • Hölldobler B, Wilson EO (2009) The superorganism: the beauty, elegance, and strangeness of insect societies. WW Norton & Company, New York

    Google Scholar 

  • Horváth G, Majer J, Horváth L, Szivák I, Kriska G (2008) Ventral polarization vision in tabanids: horseflies and deerflies (Diptera: Tabanidae) are attracted to horizontally polarized light. Naturwissenschaften 95:1093–1100

    PubMed  Google Scholar 

  • Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393

    CAS  PubMed  Google Scholar 

  • Hoy R, Robert D (1996) Tympanal hearing in insects. Annu Rev Entomol 41:433–450

    CAS  PubMed  Google Scholar 

  • Hu X, Wang Y, Lin X, Chen T, An D, Lei Z (2011) Preference of aphids to different color sticky cards and different wavelengths of yellow sticky boards. Acta Agric Bor Sin 20:190–193

    Google Scholar 

  • Hutchinson J (2005) Is more choice always desirable? Evidence and arguments from leks, food selection, and environmental enrichment. Biol Rev 80:73–92

    PubMed  Google Scholar 

  • Ishay JS, Elly Lior S (1990) Digging activity by the oriental hornet (Vespa orientalis; Hymenoptera, Vespinae) is correlated with solar radiation. J Ethol 8:61–68. https://doi.org/10.1007/bf02350275

    Article  Google Scholar 

  • Ishay JS, Shira K (2000) Ultraviolet B light stimulates hornet activities—a review. Semicond Sci Technol 15:704–723

    CAS  Google Scholar 

  • King JR, Tschinkel WR (2008) Experimental evidence that human impacts drive fire ant invasions and ecological change. P Natl Acad Sci USA 105:20339–20343

    CAS  Google Scholar 

  • Klotz J, Reid B, Gordon W (1992) Variation of ommatidia number as a function of worker size in Camponotus pennsylvanicus (DeGeer) (Hymenoptera: Formicidae). Insect Soc 39:233–236

    Google Scholar 

  • Kretz R (1979) A behavioural analysis of colour vision in the ant Cataglyphis bicolor (Formicidae, Hymenoptera). J Comp Physiol A 131:217–233

    Google Scholar 

  • Kunze J, Gumbert A (2001) The combined effect of color and odor on flower choice behavior of bumble bees in flower mimicry systems. Behav Ecol 12:447–456. https://doi.org/10.1093/beheco/12.4.447

    Article  Google Scholar 

  • Larabee FJ, Suarez AV (2014) The evolution and functional morphology of trap-jaw ants (Hymenoptera: Formicidae). Myrmecol News 20:25–36

    Google Scholar 

  • Lee H-J, Loher W (1996) Influence of age and environmental factors on burrow-making behavior of the short-tailed cricket, Anurogryllus muticus (De Geer) (Orthoptera: Gryllidae). J Insect Behav 9:819–834. https://doi.org/10.1007/bf02213558

    Article  Google Scholar 

  • Lehrer M, Srinivasan MV, Zhang S-W, Horridge GA (1988) Motion cues provide the bee’s visual world with a third dimension. Nature 332:356–357

    Google Scholar 

  • Lofgren CS (1986) The economic importance and control of imported fire ants in the United States. In: Vinson SB (ed) Economic impact and control of social insects. Praeger, New York, pp 227–256

    Google Scholar 

  • Lythgoe J, Partridge J (1989) Visual pigments and the acquisition of visual information. J Exp Biol 146:1–20

    CAS  PubMed  Google Scholar 

  • Marak G, Wolken J (1965) An action spectrum for the fire ant (Solenopsis saevissima). Nature 205:1328–1329

    Google Scholar 

  • Martínez-Harms J, Palacios A, Márquez N, Estay P, Arroyo M, Mpodozis J (2010) Can red flowers be conspicuous to bees? Bombus dahlbomii and South American temperate forest flowers as a case in point. J Exp Biol 213:564–571

    PubMed  Google Scholar 

  • Martinoya C, Bloch S, Ventura DF, Puglia NM (1975) Spectral efficiency as measured by ERG in the ant (Atta sexdens rubropilosa). J Comp Physiol 104:205–210

    Google Scholar 

  • McLeman M, Pratt S, Franks N (2002) Navigation using visual landmarks by the ant Leptothorax albipennis. Insect Soc 49:203–208

    Google Scholar 

  • Morrison LW, Porter SD, Daniels E, Korzukhin MD (2004) Potential global range expansion of the invasive fire ant, Solenopsis invicta. Biol Invasions 6:183–191

    Google Scholar 

  • Moser JC, Reeve JD, Bento JMS, Della Lucia TM, Cameron RS, Heck NM (2004) Eye size and behaviour of day-and night-flying leafcutting ant alates. J Zool 264:69–75

    Google Scholar 

  • Mote MI, Wehner R (1980) Functional characteristics of photoreceptors in the compound eye and ocellus of the desert ant, Cataglyphis bicolor. J Comp Physiol 137:63–71

    Google Scholar 

  • Narendra A, Reid SF, Greiner B, Peters RA, Hemmi JM, Ribi WA, Zeil J (2010) Caste-specific visual adaptations to distinct daily activity schedules in Australian Myrmecia ants. Proc R Soc B. 278:1141–1149. https://doi.org/10.1098/rspb.2010.1378

    Article  PubMed  Google Scholar 

  • Natwick ET, Byers JA, Chu C-c, Lopez M, Henneberry TJ (2007) Early detection and mass trapping of Frankliniella occidentalis, and Thrips tabaci in vegetable crops. Southwest Entomol 32:229–238

    Google Scholar 

  • Newland PL, Hunt E, Sharkh SM, Hama N, Takahata M, Jackson CW (2008) Static electric field detection and behavioural avoidance in cockroaches. J Exp Biol 211:3682–3690

    PubMed  Google Scholar 

  • Ogawa Y, Falkowski M, Narendra A, Zeil J, Hemmi JM (2015) Three spectrally distinct photoreceptors in diurnal and nocturnal Australian ants. Proc R Soc B 282:20150673

    PubMed  Google Scholar 

  • Ozaki M et al (2005) Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 309:311–314

    CAS  PubMed  Google Scholar 

  • Peitsch D, Fietz A, Hertel H, de Souza J, Ventura DF, Menzel R (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170:23–40

    CAS  PubMed  Google Scholar 

  • Pollack G (2000) Who, what, where? Recognition and localization of acoustic signals by insects. Curr Opin Neurobiol 10:763–767

    CAS  PubMed  Google Scholar 

  • Prolić Z, Jovanović R, Konjević G, Janać B (2003) Behavioral differences of the insect Morimus funereus (Coleoptera, Cerambycidae) exposed to an extremely low frequency magnetic field. Electromagn Biol Med 22:63–73

    Google Scholar 

  • Provost E, Blight O, Tirard A, Renucci M (2008) Hydrocarbons and insects’ social physiology. In: Maes R (ed) Insect physiology: new research. Nova Science Publishers, New York, pp 19–72

    Google Scholar 

  • Raffa KF, Havill NP, Nordheim EV (2002) How many choices can your test animal compare effectively? Evaluating a critical assumption of behavioral preference tests. Oecologia 133:422–429

    PubMed  Google Scholar 

  • Rao S, Ostroverkhova O (2015) Visual outdoor response of multiple wild bee species: highly selective stimulation of a single photoreceptor type by sunlight-induced fluorescence. J Comp Physiol A 201:705–716

    CAS  Google Scholar 

  • Reed J, Puckett R, Gold R (2015) Induced effects on red imported fire ant (Hymenoptera: Formicidae) forager size ratios by Pseudacteon spp. (Diptera: Phoridae): implications on bait size selection. Environ Entomol 44:1407–1416

    CAS  PubMed  Google Scholar 

  • Reid SF, Narendra A, Hemmi JM, Zeil J (2011) Polarised skylight and the landmark panorama provide night-active bull ants with compass information during route following. J Exp Biol 214:363–370. https://doi.org/10.1242/jeb.049338

    Article  PubMed  Google Scholar 

  • Reisenman CE, Giurfa M (2008) Chromatic and achromatic stimulus discrimination of long wavelength (red) visual stimuli by the honeybee Apis mellifera. Arthropod-Plant Inte 2:137–146

    Google Scholar 

  • Richard F-J, Hunt J (2013) Intracolony chemical communication in social insects. Insect Soc 60:275–291

    Google Scholar 

  • Romeis J, Shanower T, Zebitz C (1998) Response of Trichogramma egg parasitoids to colored sticky traps. Biocontrol 43:17–27

    Google Scholar 

  • Roth H, Menzel R (1972) ERG of Formica polyctena and selective adaptation. In: Wehner R (ed) Information processing in the visual systems of anthropods. Springer, Berlin, pp 177–181

    Google Scholar 

  • Sandoval EL, Wajnberg E, Esquivel DM, de Barros HL, Acosta-Avalos D (2012) Magnetic orientation in Solenopsis sp. ants. J Insect Behav 25:612–619

    Google Scholar 

  • Sasagawa H, Narita R, Kitagawa Y, Kadowaki T (2003) The expression of genes encoding visual components is regulated by a circadian clock, light environment and age in the honeybee (Apis mellifera). Eur J Neurosci 17:963–970. https://doi.org/10.1046/j.1460-9568.2003.02528.x

    Article  PubMed  Google Scholar 

  • Schwarz S, Narendra A, Zeil J (2011) The properties of the visual system in the Australian desert ant Melophorus bagoti. Arthropod Struct Dev 40:128–134

    PubMed  Google Scholar 

  • Segura DF, Viscarret MM, Paladino LZC, Ovruski SM, Cladera JL (2007) Role of visual information and learning in habitat selection by a generalist parasitoid foraging for concealed hosts. Anim Behav 74:131–142

    Google Scholar 

  • Shafir S (1996) Color discrimination conditioning of a wasp, Polybia occidentalis (Hymenoptera: Vespidae). Biotropica 28:243–251

    Google Scholar 

  • Shimoda M, Honda K-i (2013) Insect reactions to light and its applications to pest management. Appl Entomol Zool 48:413–421

    Google Scholar 

  • Spaethe J, Streinzer M, Eckert J, May S, Dyer AG (2014) Behavioural evidence of colour vision in free flying stingless bees. J Comp Physiol A 200:485–496

    CAS  Google Scholar 

  • Srinivasan MV (2010) Honey bees as a model for vision, perception, and cognition. Annu Rev Entomol 55:267–284

    CAS  PubMed  Google Scholar 

  • Stavenga D, Smits R, Hoenders B (1993) Simple exponential functions describing the absorbance bands of visual pigment spectra. Vis Res 33:1011–1017

    CAS  PubMed  Google Scholar 

  • Stephen WP, Rao S (2005) Unscented color traps for non-Apis bees (Hymenoptera: Apiformes). J Kansas Entomol Soc 78:373–380

    Google Scholar 

  • Sturgis SJ, Gordon DM (2012) Nestmate recognition in ants (Hymenoptera: Formicidae): a review. Myrmecol News 16:101–110

    Google Scholar 

  • Sutherst RW, Maywald G (2005) A climate model of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae): implications for invasion of new regions, particularly Oceania. Environ Entomol 34:317–335

    Google Scholar 

  • Tanner CJ, Adler FR (2009) To fight or not to fight: context-dependent interspecific aggression in competing ants. Anim Behav 77:297–305

    Google Scholar 

  • Tao L, Mao-Ling S, Shu-Ping S, Guo-Fa C, Zhi-Hong G (2012) Effect of the trap color on the capture of ichneumonids wasps (Hymenoptera). Rev Colomb Entomol 38:347–350

    Google Scholar 

  • Telles FJ, Lind O, Henze MJ, Rodríguez-Gironés MA, Goyret J, Kelber A (2014) Out of the blue: the spectral sensitivity of hummingbird hawkmoths. J Comp Physiol A 200:537–546

    Google Scholar 

  • Torrisi GJ, Hoback WW (2013) Color and container size affect mosquito (Aedes triseriatus) oviposition. Northeast Nat 20:363–371

    Google Scholar 

  • Tschinkel WR (2006) The fire ants. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Vinson SB (2013) Impact of the invasion of the imported fire ant. Insect Sci 20:439–455

    PubMed  Google Scholar 

  • von Frisch K (1914) Der farbensinn und formensinn der biene. Zool Jahrb Abt All Zool Physiol Tiere 35:1–179

    Google Scholar 

  • Wäckers F (1994) The effect of food deprivation on the innate visual and olfactory preferences in the parasitoid Cotesia rubecula. J Insect Physiol 40:641–649

    Google Scholar 

  • Wajnberg E, Acosta-Avalos D, Alves OC, de Oliveira JF, Srygley RB, Esquivel DM (2010) Magnetoreception in eusocial insects: an update. J R Soc Interface 7:S207–S225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wakakuwa M, Terakita A, Koyanagi M, Stavenga DG, Shichida Y, Arikawa K (2010) Evolution and mechanism of spectral tuning of blue-absorbing visual pigments in butterflies. PLoS One 5:e15015

    PubMed  PubMed Central  Google Scholar 

  • Warrant E, Dacke M (2011) Vision and visual navigation in nocturnal insects. Annu Rev Entomol 56:239–254. https://doi.org/10.1146/annurev-ento-120709-144852

    CAS  Article  PubMed  Google Scholar 

  • Wehner R, Toggweiler F (1972) Verhaltensphysiologischer nachweis des farbensehens bei Cataglyphis bicolor (Formicidae, Hymenoptera). J Comp Physiol 77:239–255

    Google Scholar 

  • Wetterer JK (2013) Exotic spread of Solenopsis invicta Buren (Hymenoptera: Formicidae) beyond North America. Sociobiology 60:50–55

    Google Scholar 

  • Williams DF, Homer L, Oi DH (2001) An historical perspective of treatment programs and the development of chemical baits for control. Am Entomol 47:146–159

    Google Scholar 

  • Wurm Y et al (2011) The genome of the fire ant Solenopsis invicta. P Natl Acad Sci USA 108:5679–5684

    CAS  Google Scholar 

  • Yilmaz A, Lindenberg A, Albert S, Grübel K, Spaethe J, Rössler W, Groh C (2016) Age-related and light-induced plasticity in opsin gene expression and in primary and secondary visual centers of the nectar-feeding ant Camponotus rufipes. Dev Neurobiol 76:1041–1057

    CAS  PubMed  Google Scholar 

  • Yilmaz A, Dyer AG, Rössler W, Spaethe J (2017) Innate colour preference, individual learning and memory retention in the ant Camponotus blandus. J Exp Biol 220:3315–3326

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Michael Longnecker for helping with statistics and Julio Bernal for making helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Carbaugh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 933 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carbaugh, J.R., Renthal, R.D., Vinson, S.B. et al. Color discrimination and preference in the fire ant Solenopsis invicta Buren. Insect. Soc. 67, 167–178 (2020). https://doi.org/10.1007/s00040-019-00740-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-019-00740-w

Keywords

  • Solenopsis invicta
  • Fire ant
  • Formicidae
  • Color vision
  • Visual discrimination