Skip to main content
Log in

Local variation in recombination rates of the honey bee (Apis mellifera) genome among samples from six disparate populations

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Meiotic recombination is an essential component of eukaryotic sexual reproduction, but its frequency varies within and between genomes. Although it is well established that honey bees have a high recombination rate with about 20 cM/Mbp, the proximate and ultimate causes of this exceptional rate are poorly understood. Here, we describe six linkage maps of the western honey bee Apis mellifera that were produced with consistent methodology from samples from distinct parts of the species near global distribution. We compared the genome-wide rates and distribution of meiotic crossovers among the six maps and found considerable differences. Overall similarity of local recombination rates among our samples was unrelated to geographic or phylogenetic distance of the populations that our samples were derived from. However, the limited sampling constrains the interpretation of our results, because it is unclear how representative these samples were. In contrast to previous studies, we found only in two datasets a significant relation between local recombination rate and GC content. Focusing on regions of particularly increased or decreased recombination in specific maps, we identified several enriched gene ontologies in these regions and speculated about their local adaptive relevance. These data are contributing to an increasing comparative effort to gain an understanding of the intra-specific variability of recombination rates and their evolutionary role in honey bees and other social insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alleman A, Feldmeyer B, Foitzik S (2018) Comparative analyses of co-evolving host-parasite associations reveal unique gene expression patterns underlying slavemaker raiding and host defensive phenotypes. Sci Rep 8:1951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amdam GV, Norberg K, Omholt SW, Kryger P, Lourenco AP, Bitondi MMG, Simoes ZLP (2005) Higher vitellogenin concentrations in honey bee workers may be an adaptation to life in temperate climates. Insectes Soc 52:316–319

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57:289–300

    Google Scholar 

  • Bessoltane N, Toffano-Nioche C, Solignac M, Mougel F (2012) Fine scale analysis of crossover and non-crossover and detection of recombination sequence motifs in the honeybee (Apis mellifera). PLoS One 7:e36229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beye M et al (2006) Exceptionally high levels of recombination across the honey bee genome. Genome Res 16:1339–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourgeois AL, Rinderer TE (2009) Genetic characterization of Russian Honey Bee stock selected for improved resistance to Varroa destructor. J Econ Entomol 102:1233–1238

    Article  CAS  PubMed  Google Scholar 

  • Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140

    Article  PubMed  PubMed Central  Google Scholar 

  • Charlesworth B, Charlesworth D (1985) Genetic variation in recombination. I. Responses to selection and preliminary genetic analysis. Heredity 54:71–83

    Article  Google Scholar 

  • Comeron JM, Ratnappan R, Bailin S (2012) The many landscapes of recombination in Drosophila melanogaster. PLoS Genet 8:e1002905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conlon B, Frey E, Rosenkranz P, Locke B, Moritz R, Routtu J (2018) The role of epistatic interactions underpinning resistance to parasitic Varroa mites in haploid honeybee drones. J Evol Biol 31:801–809

    Article  CAS  PubMed  Google Scholar 

  • Coop G, Wen XQ, Ober C, Pritchard JK, Przeworski M (2008) High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science 319:1395–1398

    Article  CAS  PubMed  Google Scholar 

  • Cvetković D, Tucić N (1986) Female recombination rates and fitness in Drosophila melanogaster. J Zool Syst Evol Res 24:198–207

    Article  Google Scholar 

  • De Villena FP-M, Sapienza C (2001) Recombination is proportional to the number of chromosome arms in mammals. Mamm Genome 12:318–322

    Article  CAS  Google Scholar 

  • Dumont BL, White MA, Steffy B, Wiltshire T, Payseur BA (2011) Extensive recombination rate variation in the house mouse species complex inferred from genetic linkage maps. Genome Res 21:114–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsik C et al (2014) Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC Genom 15:86

    Article  Google Scholar 

  • Elsik CG, Tayal A, Diesh CM, Unni DR, Emery ML, Nguyen HN, Hagen DE (2015) Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine. Nucleic Acids Res 44:D793–D800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feyereisen R (1999) Insect P450 enzymes. Annu Rev Entomol 44:507–533

    Article  CAS  PubMed  Google Scholar 

  • Fledel-Alon A, Wilson DJ, Broman K, Wen X, Ober C, Coop G, Przeworski M (2009) Broad-scale recombination patterns underlying proper disjunction in humans. PLoS Genet 5:e1000658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harpur BA, Minaei S, Kent CF, Zayed A (2012) Management increases genetic diversity of honey bees via admixture. Mol Ecol 21:4414–4421

    Article  PubMed  Google Scholar 

  • Harpur BA, Kent CF, Molodtsova D, Lebon JM, Alqarni AS, Owayss AA, Zayed A (2014) Population genomics of the honey bee reveals strong signatures of positive selection on worker traits. Proc Natl Acad Sci 111:2614–2619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartfield M, Keightley PD (2012) Current hypotheses for the evolution of sex and recombination. Integr Zool 7:192–209

    Article  PubMed  Google Scholar 

  • Hasegawa M et al (2009) Differential gene expression in the mandibular glands of queen and worker honeybees, Apis mellifera L.: implications for caste-selective aldehyde and fatty acid metabolism. Insect Biochem Mol 39:661–667

    Article  CAS  Google Scholar 

  • Hill WG, Robertson A (1966) The effect of linkage on limits to artificial selection. Genet Res 8:269–294

    Article  CAS  PubMed  Google Scholar 

  • Hillers KJ (2004) Crossover interference. Curr Biol 14:R1036–R1037

    Article  CAS  PubMed  Google Scholar 

  • Huang W et al (2014) Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines. Genome Res 24:1193–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt GJ, Page RE (1995) Linkage map of the honey bee, Apis mellifera, based on RAPD markers. Genetics 139:1371–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter CM, Huang W, Mackay TF, Singh ND (2016) The genetic architecture of natural variation in recombination rate in Drosophila melanogaster. PLoS Genet 12:e1005951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnston SE, Bérénos C, Slate J, Pemberton JM (2016) Conserved genetic architecture underlying individual recombination rate variation in a wild population of Soay sheep (Ovis aries). Genetics 203:583–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JC, Wallberg A, Christmas MJ, Kapheim KM, Webster MT (2019) Extreme differences in recombination rate between the genomes of a solitary and a social bee. Mol Biol Evol 36:2277–2291

    Article  PubMed  CAS  Google Scholar 

  • Kapheim KM et al (2015) Genomic signatures of evolutionary transitions from solitary to group living. Science 348:1139–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavanagh K, Jörnvall H, Persson B, Oppermann U (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families. Cell Mol Life Sci 65:3895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakami T, Wallberg A, Olsson A, Wintermantel D, de Miranda JR, Allsopp M, Rundlӧf M, Webster MT (2019) Substantial heritable variation in recombination rate on multiple scales in honeybees and bumblebees. Genetics 212:1101–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kent CF, Zayed A (2013) Evolution of recombination and genome structure in eusocial insects. Commun Integr Biol 6:e22919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kent CF, Minaei S, Harpur BA, Zayed A (2012) Recombination is associated with the evolution of genome structure and worker behavior in honey bees. Proc Natl Acad Sci USA 109:18012–18017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kocher SD et al (2013) The draft genome of a socially polymorphic halictid bee, Lasioglossum albipes. Genome Biol 14:R142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kohl KP, Sekelsky J (2013) Meiotic and mitotic recombination in meiosis. Genetics 194:327–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong A et al (2004) Recombination rate and reproductive success in humans. Nat Genet 36:1203

    Article  CAS  PubMed  Google Scholar 

  • Langberg K, Phillips M, Rueppell O (2018) Testing the effect of paraquat exposure on genomic recombination rates in queens of the western honey bee, Apis mellifera. Genetica 146:171–178

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391

    Article  CAS  PubMed  Google Scholar 

  • Lenormand T, Engelstädter J, Johnston SE, Wijnker E, Haag CR (2016) Evolutionary mysteries in meiosis. Philos Trans R Soc B 371:20160001

    Article  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu H, Zhang X, Huang J, Chen J-Q, Tian D, Hurst L, Yang S (2015) Causes and consequences of crossing-over evidenced via a high-resolution recombinational landscape of the honey bee. Genome Biol 16:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowell BB, Spiegelman BM (2000) Towards a molecular understanding of adaptive thermogenesis. Nature 404:652

    Article  CAS  PubMed  Google Scholar 

  • Lynch M (2006) The origins of eukaryotic gene structure. Mol Biol Evol 23:450–468

    Article  CAS  PubMed  Google Scholar 

  • Mattila HR, Seeley TD (2007) Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317:362–364

    Article  CAS  PubMed  Google Scholar 

  • Meixner MD, Costa C, Kryger P, Hatjina F, Bouga M, Ivanova E, Büchler R (2010) Conserving diversity and vitality for honey bee breeding. J Apic Res 49:85–92

    Article  Google Scholar 

  • Meixner MD, Büchler R, Costa C, Francis RM, Hatjina F, Kryger P, Uzunov A, Carreck NL (2014) Honey bee genotypes and the environment. J Apic Res 53:183–187

    Article  Google Scholar 

  • Mougel F, Poursat M-A, Beaume N, Vautrin D, Solignac M (2014) High-resolution linkage map for two honeybee chromosomes: the hotspot quest. Mol Genet Genom 289:11–24

    Article  CAS  Google Scholar 

  • Mugal CF, Weber CC, Ellegren H (2015) GC-biased gene conversion links the recombination landscape and demography to genomic base composition: GC-biased gene conversion drives genomic base composition across a wide range of species. BioEssays 37:1317–1326

    Article  CAS  PubMed  Google Scholar 

  • Myers S, Bottolo L, Freeman C, McVean G, Donnelly P (2005) A fine-scale map of recombination rates and hotspots across the human genome. Science 310:321–324

    Article  CAS  PubMed  Google Scholar 

  • Otto SP, Barton NH (2001) Selection for recombination in small populations. Evolution 55:1921–1931

    Article  CAS  PubMed  Google Scholar 

  • Pearson P, Ellis J, Evans H (1970) A gross reduction in chiasma formation during meiotic prophase and a defective DNA repair mechanism associated with a case of human male infertility. Cytogenet Genome Res 9:460–467

    Article  CAS  Google Scholar 

  • Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7:e37135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto MA et al (2014) Genetic integrity of the Dark European honey bee (Apis mellifera mellifera) from protected populations: a genome-wide assessment using SNPs and mtDNA sequence data. J Apic Res 53:269–278

    Article  Google Scholar 

  • Reich DE et al (2002) Human genome sequence variation and the influence of gene history, mutation and recombination. Nat Genet 32:135

    Article  CAS  PubMed  Google Scholar 

  • Ritz KR, Noor MA, Singh ND (2017) Variation in recombination rate: adaptive or not? Trends Genet 33:364–374

    Article  CAS  PubMed  Google Scholar 

  • Robertson HM, Wanner KW (2006) The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res 16:1395–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross C, DeFelice D, Hunt G, Ihle K, Rueppell O (2015a) A comparison of multiple genome-wide recombination maps in Apis mellifera. Collaborative mathematics and statistics research. Springer, Berlin, pp 91–98

    Google Scholar 

  • Ross CR, DeFelice DS, Hunt GJ, Ihle KE, Amdam GV, Rueppell O (2015b) Genomic correlates of recombination rate and its variability across eight recombination maps in the western honey bee (Apis mellifera L.). BMC Genom 16:107

    Article  Google Scholar 

  • Ross L, Blackmon H, Lorite P, Gokhman V, Hardy N (2015c) Recombination, chromosome number and eusociality in the Hymenoptera. J Evol Biol 28:105–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rueppell O, Meier S, Deutsch R (2012) Multiple mating but not recombination causes quantitative increase in offspring genetic diversity for varying genetic architectures. PLoS One 7:e47220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rueppell O et al (2016) A new metazoan recombination rate record and consistently high recombination rates in the honey bee genus Apis accompanied by frequent inversions but not translocations. Genome Biol Evol 8:3653–3660

    PubMed  PubMed Central  Google Scholar 

  • Ruttner F (1988) Biogeography and taxonomy of honeybees. Springer, Berlin

    Book  Google Scholar 

  • Schneider SS, DeGrandi-Hoffman G, Smith DR (2004) The African honey bee: factors contributing to a successful biological invasion. Annu Rev Entomol 49:351–376

    Article  CAS  Google Scholar 

  • Shi YY, Sun LX, Huang ZY, Wu XB, Zhu YQ, Zheng HJ, Zeng ZJ (2013) A SNP based high-density linkage map of Apis cerana reveals a high recombination rate similar to Apis mellifera. PLoS One 8:e76459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirviö A, Gadau J, Rueppell O, Lamatsch D, Boomsma JJ, Pamilo P, Page RE (2006) High recombination frequency creates genotypic diversity in colonies of the leaf-cutting ant Acromyrmex echinatior. J Evol Biol 19:1475–1485

    Article  PubMed  Google Scholar 

  • Sirviö A, Johnston JS, Wenseleers T, Pamilo P (2011) A high recombination rate in eusocial Hymenoptera: evidence from the common wasp Vespula vulgaris. BMC Genet 12:95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smukowski CS, Noor MAF (2011) Recombination rate variation in closely related species. Heredity 107:496–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solignac M, Mougel F, Vautrin D, Monnerot M, Cornuet JM (2007) A third-generation microsatellite-based linkage map of the honey bee, Apis mellifera, and its comparison with the sequence-based physical map. Genome Biol 8:R66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Southwick EE, Heldmaier G (1987) Temperature control in honey bee colonies. Bioscience 37:395–399

    Article  Google Scholar 

  • Stapley J, Feulner PG, Johnston SE, Santure AW, Smadja CM (2017) Variation in recombination frequency and distribution across eukaryotes: patterns and processes. Philos Trans R Soc B 372:20160455

    Article  Google Scholar 

  • Stevison LS, Sefick S, Rushton C, Graze RM (2017) Recombination rate plasticity: revealing mechanisms by design. Philos Trans R Soc B 372:20160459

    Article  CAS  Google Scholar 

  • Tarpy DR, Seeley TD (2006) Lower disease infections in honeybee (Apis mellifera) colonies headed by polyandrous vs monandrous queens. Naturwissenschaften 93:195–199

    Article  CAS  PubMed  Google Scholar 

  • Tundo GR et al (2017) Multiple functions of insulin-degrading enzyme: a metabolic crosslight? Crit Rev Biochem Mol Biol 52:554–582

    Article  CAS  PubMed  Google Scholar 

  • Ubeda F, Wilkins JF (2011) The Red Queen theory of recombination hotspots. J Evol Biol 24:541–553

    Article  CAS  PubMed  Google Scholar 

  • Van Oers K et al (2014) Replicated high-density genetic maps of two great tit populations reveal fine-scale genomic departures from sex-equal recombination rates. Heredity 112:307

    Article  PubMed  CAS  Google Scholar 

  • Wallberg A et al (2014) A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nat Genet 46:1081–1090

    Article  CAS  PubMed  Google Scholar 

  • Wallberg A, Glémin S, Webster MT (2015) Extreme recombination frequencies shape genome variation and evolution in the Honeybee, Apis mellifera. PLoS Genet 11:e1005189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wallberg A et al (2019) A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome-length scaffolds. BMC Genom 20:275

    Article  Google Scholar 

  • Wilfert L, Gadau J, Schmid-Hempel P (2007) Variation in genomic recombination rates among animal taxa and the case of social insects. Heredity 98:189–197

    Article  CAS  PubMed  Google Scholar 

  • Williams CG, Goodman MM, Stuber CW (1995) Comparative recombination distances among Zea mays L. inbreds, wide crosses and interspecific hybrids. Genetics 141:1573–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all instructors and fellow students of the Math-Bio REU-site at UNCG for their support and collegial working atmosphere. We appreciate the opportunity to sample “Russian” colonies from Steven Coy (then President of the Russian Honey Bee Breeders) in Perkinston, Mississippi. We would like to thank Sharon Furiness and the Genomics Core Lab at TAMU Corpus Christi for performing the ddRAD library preparation, SE sequencing, and SNP extraction. Esmaeil Amiri assisted in the data management. We would also like to thank three anonymous reviewers whose comments on a previous version of this manuscript helped us to improve the presentation of our study. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R15GM102753. Further financial support was provided by the US National Science Foundation (DMS #1359187) and UNCG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Rueppell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 1875 kb)

Supplementary material 2 (PDF 1079 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeLory, T., Funderburk, K., Miller, K. et al. Local variation in recombination rates of the honey bee (Apis mellifera) genome among samples from six disparate populations. Insect. Soc. 67, 127–138 (2020). https://doi.org/10.1007/s00040-019-00736-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-019-00736-6

Keywords

Navigation