Aitchison J (1982) The statistical analysis of compositional data. J R Stat Soc Ser B Stat Methodol 44(2):139–177
Google Scholar
Breed MD, Butler L, Stiller TM (1985) Kin discrimination by worker honey bees in genetically mixed groups. Proc Natl Acad Sci USA 82:3058–3061
CAS
Article
Google Scholar
Camargo JM, Pedro SR (2003) Meliponini neotropicais: o gênero Partamona Schwarz, 1939 (Hymenoptera, Apidae, Apinae)-bionomia e biogeografia. Rev Bras Entomol 47:311–372
Article
Google Scholar
Carrijo TF, Gonçalves RB, Santos RG (2012) Review of bees as guests in termite nests, with a new record of the communal bee, Gaesochira obscura (Smith, 1879) (Hymenoptera, Apidae), in nests of Anoplotermes banksi Emerson, 1925 (Isoptera, Termitidae, Apicotermitinae). Insect Soc 59:141–149. https://doi.org/10.1007/s00040-012-0218-x
Article
Google Scholar
Dani FR, Jones GR, Corsi S, Beard R, Pradella D, Turillazzi S (2005) Nestmate recognition cues in the honey bee: differential importance of cuticular alkanes and alkenes. Chem Senses 30:477–489
CAS
Article
Google Scholar
de Camargo JMF (1980) O grupo Partamona (Partamona) testacea (Klug): suas espécies, distribuição e diferenciação geográfica (Meliponinae, Apidae, Hymenoptera). Acta Amazon 10:5–175
Article
Google Scholar
Dejean A (2011) Prey capture behavior in an arboreal African ponerine ant. PLoS One 6(5):e19837
CAS
Article
Google Scholar
Dincă V, Montagud S, Talavera G et al (2015) DNA barcode reference library for Iberian butterflies enables a continental-scale preview of potential cryptic diversity. Sci Rep. https://doi.org/10.1038/srep12395
Article
PubMed
PubMed Central
Google Scholar
Emery VJ, Tsutsui ND (2013) Recognition in a social symbiosis: chemical phenotypes and nestmate recognition behaviors of neotropical parabiotic ants. PLoS One 8(2):e56492
CAS
Article
Google Scholar
Errard C, Regla JI, Hefetz A (2003) Interspecific recognition in Chilean parabiotic ant species. Insect Soc 50:268–273
Article
Google Scholar
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299
CAS
PubMed
Google Scholar
Guerrieri FJ, d’Ettorre P (2008) The mandible opening response: quantifying aggression elicited by chemical cues in ants. J Exp Biol 211:1109–1113
CAS
Article
Google Scholar
Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc B 270:313–321. https://doi.org/10.1098/rspb.2002.2218
CAS
Article
PubMed
Google Scholar
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780
CAS
Article
Google Scholar
Kerr WE, Jungnickel H, Morgan ED (2004) Workers of the stingless bee Melipona scutellaris are more similar to males than to queens in their cuticular compounds. Apidologie 35:611–618
Article
Google Scholar
Lenoir A, d’Ettorre P, Errard C, Hefetz A (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:573–599
CAS
Article
Google Scholar
Leonhardt SD, Wallace HM, Schmitt T (2011) The cuticular profiles of Australian stingless bees are shaped by resin of the eucalypt tree Corymbia torelliana. Austral Ecol 36:537–543
Article
Google Scholar
Menzel F, Schmitt T (2012) Tolerance requires the right smell: first evidence for interspecific selection on chemical recognition cues. Evolution 66:896–904
Article
Google Scholar
Menzel F, Blüthgen N, Schmitt T (2008) Tropical parabiotic ants: highly unusual cuticular substances and low interspecific discrimination. Front Zool 5:16
Article
Google Scholar
Michener CD (2000) The bees of the world, vol 1. JHU Press, Baltimore
Google Scholar
Nunes TM, Turatti IC, Lopes NP, Zucchi R (2009) Chemical signals in the stingless bee, Frieseomelitta varia, indicate caste, gender, age, and reproductive status. J Chem Ecol 35:1172
CAS
Article
Google Scholar
Orivel J, Errard C, Dejean A (1997) Ant gardens: interspecific recognition in parabiotic ant species. Behav Ecol Sociobiol 40:87–93
Article
Google Scholar
Ratnasingham S, Hebert PD (2013) A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PLoS ONE 8(7):e66213
CAS
Article
Google Scholar
Roubik DW (1983) Nest and colony characteristics of stingless bees from Panama (Hymenoptera: Apidae). J Kans Entomol Soc 56:327–355
Google Scholar
Roubik DW (2006) Stingless bee nesting biology. Apidologie 37:124–143
Article
Google Scholar
Sakagami SF, Inoue T, Yamane S, Salmah S (1989) Nests of the myrmecophilous stingless bee, Trigona moorei: how do bees initiate their nest within an arboreal ant nest? Biotropica 21:265–274
Article
Google Scholar
Schwarz HF (1948) Stingless bees (Meliponinae) of the western hemisphere. Bull Am Mus Nat Hist 90:1–546
Google Scholar
Siqueira ENL, Bartelli BF, Nascimento ART, Nogueira-Ferreira FH (2012) Diversity and nesting substrates of stingless bees (Hymenoptera, Meliponina) in a forest remnant. Psyche 2012:1–9
Article
Google Scholar
Stucky BJ (2012) SeqTrace: a graphical tool for rapidly processing DNA sequencing chromatograms. J Biomolec Tech JBT 23:90
Article
Google Scholar
van Zweden JS, d’Ettorre P (2010) Nestmate recognition in social insects and the role of hydrocarbons. Insect Hydrocarb Biol Biochem Chem Ecol 11:222–243
Article
Google Scholar
Wille A, Michener CD (1973) The nest architecture of stingless bees with special reference to those of Costa Rica (Hymenoptera, Apidae). Rev Biol Trop 21:1–278
Google Scholar
Wilson EO (1971) The insect societies. Harvard University Press, Cambridge Mass
Google Scholar
Young AM, Hermann HR (1980) Notes on foraging of the giant tropical ant Paraponera clavata (Hymenoptera: Formicidae: Ponerinae). J Kans Entomol Soc 53:35–55
Google Scholar