Skip to main content

Advertisement

Log in

Spatiotemporal responses of ant communities across a disturbance gradient: the role of behavioral traits

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

This study examined how chronic anthropogenic disturbance impacts the spatiotemporal dynamics of ant foraging activity and the role played by behavioral traits. Ten plots (0.1 ha) along a gradient of chronic disturbance intensity were sampled in Catimbau National Park (Caatinga vegetation, Brazil). Vegetative structure, ground surface temperature, and ant communities in shaded and sun-exposed microhabitats were characterized during the day and at night. Each ant species’ degree of nocturnality and shaded microhabitat use were determined. Along the disturbance gradient, the frequency of sun-exposed microhabitats increased, as did the daytime ground surface temperatures; also, community composition, but not ant abundance or species richness, changed. Independent of disturbance intensity, community composition differed between day and night, and ant abundance and species richness were higher during the day. Interestingly, most species did not display strictly diurnal habits, nor did they avoid foraging in sun-exposed habitats. However, species common in more disturbed areas were more diurnal and used sun-exposed microhabitats more than species common in less disturbed areas. Many species displayed marked behavioral plasticity that was unrelated to disturbance intensity. Disturbance intensity did influence shaded microhabitat use but not the degree of nocturnality. We conclude that Caatinga ants are already morphologically, behaviorally and physiologically adapted to harsh environmental conditions; that species with different behavioral traits replace each other along the disturbance gradient; and that more plastic species can persist by shifting their microhabitat use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida WR, Lopes AV, Tabarelli M, Leal IR (2015) The alien flora of Brazilian Caatinga: deliberate introductions expand the contingent of potential invaders. Biol Invasions 17:51–56

    Google Scholar 

  • Andersen AN (1995) Classification of Australian ant communities, based on functional groups which parallel plant life-forms in relation to stress and disturbance. J Biogeogr 22:15–29

    Google Scholar 

  • Andersen AN (1997) Functional groups and patterns of organizationin North American ant communities: acomparison with Australia. J Biogeogr 24:433–460

    Google Scholar 

  • Andersen AN (2019) Responses of ant communities to disturbance: five principles for understanding the disturbance dynamics of a globally dominant faunal group. J Anim Ecol 88:350–362

    PubMed  Google Scholar 

  • Andersen AN, Arnan X, Sparks K (2013) Limited niche differentiation within remarkable co-occurrences of congeneric species: Monomorium ants in the Australian seasonal tropics. Austral Ecol 38:557–567

    Google Scholar 

  • Arnan X, Rodrigo A, Retana J (2006) Post-fire recovery of Mediterranean ground ant communities follows vegetation and dryness gradients. J Biogeogr 33:1246–1258

    Google Scholar 

  • Arnan X, Rodrigo A, Retana J (2007) Uncoupling the effects of shade and food resources of vegetation on Mediterranean ants: an experimental approach at the community level. Ecography 30:161–172

    Google Scholar 

  • Arnan X, Cerdá X, Retana J (2012) Distinctive life traits and distribution along environmental gradients of dominant and subordinate Mediterranean ant species. Oecologia 170:489–500

    PubMed  Google Scholar 

  • Arnan X, Arcoverde GB, Pie MR, Ribeiro-Neto JD, Leal IR (2018a) Increased anthropogenic disturbance and aridity reduce phylogenetic and functional diversity of ant communities in Caatinga dry forest. Sci Total Environ 631–632:429–438

    PubMed  Google Scholar 

  • Arnan X, Leal IR, Tabarelli M et al (2018b) A framework for deriving measures of chronic anthropogenic disturbance: surrogate, direct, single and multi-metric indices in Brazilian Caatinga. Ecol Indic 94:274–282

    Google Scholar 

  • Baccaro FB, Feitosa RM, Fernández F, Fernandes IO, Izzo TJ, Souza JLP, Solar R (2015) Guia para os gêneros de formigas do Brasil. INPA, Manaus

    Google Scholar 

  • Bogert CM (1949) Thermoregulation in reptiles: a factor in evolution. Evolution 3:195–211

    CAS  PubMed  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    PubMed  Google Scholar 

  • Câmara T, Leal IR, Blüthgen N, Oliveira FMP, de Queiroz R, Arnan X (2018) Effects of chronic anthropogenic disturbance and rainfall on the specialization of ant-plant mutualistic networks in the Caatinga, a Brazilian dry forest. J Anim Ecol 87:1022–1033

    PubMed  Google Scholar 

  • Cerdá X, Retana J (1997) Links between worker polymorphism and thermal biology in a thermophilic ant species. Oikos 78:467–474

    Google Scholar 

  • Clémencet J, Cournault L, Odent A, Doums C (2010) Worker thermal tolerance in the thermophilic ant Cataglyphis cursor (Hymenoptera, Formicidae). Insect Soc 57:11–15

    Google Scholar 

  • Core Team R (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Cros S, Cerdá X, Retana J (1997) Spatial and temporal variations in the activity patterns of Mediterranean ant communities. Ecoscience 4:269–278

    Google Scholar 

  • Diamond SE, Nichols LM, McCoy N et al (2012) A physiological trait-based approach to predicting the responses of species to experimental climate warming. Ecology 93:2305–2312

    PubMed  Google Scholar 

  • García-Robledo C, Chuquillanqui H, Kuprewicz EK, Escobar-Sarria F (2017) Lower thermal tolerance in nocturnal than in diurnal ants: a challenge for nocturnal ectotherms facing global warming. Ecol Entomol 43:162–167

    Google Scholar 

  • Gordon DM (1991) Behavioral flexibility and the foraging ecology of seed-eating ants. Am Nat 138:379–411

    Google Scholar 

  • Gotelli NJ, Ellison AM (2002) Biogeography at a regional scale: determinants of ant species density in bogs and forests of New England. Ecology 83:1604–1609

    Google Scholar 

  • Hoffman BD (2010) Using ants for rangeland monitoring: global patterns in the responses of ant communities to grazing. Ecol Indic 10:105–111

    Google Scholar 

  • Hoffmann BD, Andersen AN (2003) Responses of ants to disturbance in Australia, with particular reference to functional groups. Austral Ecol 28:444–464

    Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Springer, Berlin

    Google Scholar 

  • Houadria M, Salas-López A, Orivel J, Blüthgen N, Menzel F (2015) Dietary and temporal niche differentiation in tropical ants—can they explain local ant coexistence? Biotropica 47:206–217

    Google Scholar 

  • Huey RB, Kingsolver JG (1993) Evolutionary responses to extreme temperatures in ecototherms. Am Nat 143:S21–S46

    Google Scholar 

  • Hurlbert AH, Ballantyne F, Powell S (2008) Shaking a leg and hot to trot: the effects of body size and temperature on running speed in ants. Ecol Entomol 33:144–154

    Google Scholar 

  • IBAMA (Instituto Brasileiro do Meio Ambiente) (2011) Monitoramento do desmatamento nos biomas brasileiros por satélite acordo de cooperação técnica MMA/IBAMA: monitoramento do bioma Caatinga 2008 a 2009. Brasília

  • Kaspari M, Clay NA, Lucas J, Yanoviak SP, Kay A (2015) Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Glob Change Biol 21:1092–1102

    Google Scholar 

  • Kearney M, Porter WP (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350

    PubMed  Google Scholar 

  • Krol MS, Jaegar A, Bronstert A, Krywkow J (2001) The semiarid integrated model (SDIM), a regional integrated model assessing water availability, vulnerability of ecosystems and society in NE-Brazil. Phys Chem Earth Part B 26:529–533

    Google Scholar 

  • Lázaro-González A, Arnan X, Boulay R, Cerdá X, Rodrigo A (2013) Short-term ecological and behavioural responses to wildfire of a Mediterranean ant species, Aphaenogaster gibbosa (Latr. 1798). Insect Conserv Divers 6:627–638

    Google Scholar 

  • Leal IR, Tabarelli M, Silva JMC (2003) Ecologia e conservação da Caatinga. Editora Universitária, Recife

    Google Scholar 

  • Leal IR, Silva JMC, Tabarelli M, Lacher TL (2005) Changing the course of biodiversity conservation in the Caatinga of Northeastern Brazil. Conserv Biol 19:701–706

    Google Scholar 

  • Leal IR, Filgueiras BKC, Gomes JP, Iannuzzi L, Andersen AN (2012) Effects of habitat fragmentation on ant richness and functional composition in Brazilian Atlantic forest. Biodivers Conserv 21:1687–1701

    Google Scholar 

  • Leal LC, Andersen AN, Leal IR (2014) Anthropogenic disturbance reduces seed-dispersal services for myrmecochorous plants in the Brazilian Caatinga. Oecologia 174:173–181

    PubMed  Google Scholar 

  • Leal LC, Andersen AN, Leal IR (2015) Disturbance winners or losers? Plants bearing extrafloral nectaries in Brazilian Caatinga. Biotropica 47:468–474

    Google Scholar 

  • Leal IR, Ribeiro-Neto JD, Arnan X, Oliveira FMP, Arcoverde GB, Feitosa RM, Andersen AN (2018) Ants of the Caatinga: diversity, biogeography and functional responses to anthropogenic disturbance and climate change. In: Leal IR, Tabarelli M, Silva JMC (eds) Caatinga: the largest tropical dry forest region in South America. Springer, Berlin, pp 65–95

    Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Funct Ecol 21:178–185

    Google Scholar 

  • Mouillot D, Graham NAJ, Villéger S, Mason NWH, Bellwood DR (2013) A functional approach reveals community responses to disturbance. Trends Ecol Evol 28:167–177

    PubMed  Google Scholar 

  • Oliveira FMP, Ribeiro-Neto JD, Andersen AN, Leal IR (2017) Chronic anthropogenic disturbance as secondary driver of ant community structure: interactions with soil type in Brazilian Caatinga. Environ Conserv 44:115–123

    Google Scholar 

  • Oliveira FMP, Andersen AN, Arnan X, Ribeiro-Neto JD, Leal IR (2019) Effects of aridity and chronic anthropogenic disturbance on seed dispersal by ants in Brazilian Caatinga. J Anim Ecol. https://doi.org/10.1111/1365-2656.12979 (in Press)

    Article  PubMed  Google Scholar 

  • Pennington RT, Lavin M, Oliveira-Filho A (2009) Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu Rev Ecol Syst 40:437–457

    Google Scholar 

  • Perfecto I, Vandermeer J (1996) Microclimatic changes and the indirect loss of ant diversity in a tropical agroecosystem. Oecologia 108:577–582

    CAS  PubMed  Google Scholar 

  • Retana J, Cerdá X (2000) Patterns of diversity and composition of Mediterranean ground ant communities tracking spatial and temporal variability in the thermal environment. Oecologia 123:436–444

    CAS  PubMed  Google Scholar 

  • Ribeiro EMS, Arroyo-Rodríguez V, Santos BA, Tabarelli M, Leal IR (2015) Chronic anthropogenic disturbance drives the biological impoverishment of the Brazilian Caatinga vegetation. J Appl Ecol 52:611–620

    Google Scholar 

  • Ribeiro EMS, Santos BA, Arroyo-Rodríguez V, Tabarelli M, Souza G, Leal IR (2016) Phylogenetic impoverishment of plant communities following chronic human disturbances in the Brazilian Caatinga. Ecology 97:1583–1592

    PubMed  Google Scholar 

  • Ribeiro-Neto JD, Arnan X, Tabarelli M, Leal IR (2016) Chronic anthropogenic disturbance causes homogenization of plant and ant communities in the Brazilian Caatinga. Biodivers Conserv 25:943–956

    Google Scholar 

  • Rito KF, Arroy-Rodríguez V, Queiroz RT, Leal IR, Tabarelli M (2017) Precipitation mediates the effect of human disturbance on the Brazilian Caatinga vegetation. J Ecol 105:828–838

    Google Scholar 

  • Sheikh AH, Ganaie GA, Thomas M, Bhandari R, Rather YA (2018) Ant pitfall trap sampling: an overview. J Ent Res 42:421–436

    Google Scholar 

  • Silva JMC, Tabarelli M, Fonseca MT, Lins L (2004) Biodiversidade da Caatinga: áreas e ações prioritárias para a conservação. Ministério do Meio Ambiente, Brasília

    Google Scholar 

  • Silva JMC, Leal IR, Tabarelli M (2018) Caatinga. The largest tropical dry forest region in South America. Springer, Berlin

    Google Scholar 

  • Singh SP (1998) Chronic disturbance, a principal cause of environmental degradation in developing countries. Environ Conserv 25:1–2

    CAS  Google Scholar 

  • Sociedade Nordestina de Ecologia (2002) Projeto Técnico para a Criação do Parque Nacional do Catimbau/PE. Secretaria de Ciência, Tecnologia e Meio Ambiente de Pernambuco—SECTMA, Recife

    Google Scholar 

  • Solar RRC et al (2016) Biodiversity consequences of land-use change and forest disturbance in the Amazon: a multi-scale assessment using ant communities. Biol Conserv 197:98–107

    Google Scholar 

  • Sommer S, Wehner R (2012) Leg allometry in ants: extreme long leggedness in thermophilic species. Arthropod Struct Dev 41:71–77

    PubMed  Google Scholar 

  • Sunday JM, Bates AE, Kearney MR, Colwell RK, Dulvy NK, Longino JT, Huey RB (2014) Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc Natl Acad Sci USA 111:5610–5615

    CAS  PubMed  Google Scholar 

  • Van Ingen LT, Campos RI, Andersen AN (2008) Ant community structure along an extended rain forest-savanna gradient in tropical Australia. J Trop Ecol 24:445–455

    Google Scholar 

  • Wittman SE, Sanders NJ, Ellison AM, Jules ES, Ratchford JS, Gotelli NJ (2010) Species interactions and thermal constraints on ant community structure. Oikos 119:551–559

    Google Scholar 

  • Zmihorski M, Slipinski P (2016) The importance of diurnal and nocturnal activity and interspecific interactions for space use by ants in clear-cuts. Ecol Entomol 41:276–283

    Google Scholar 

Download references

Acknowledgements

We are very grateful to Marcella Nínive and Fernanda M.P. Oliveira for their assistance with field work, to Rodrigo Feitosa for helping to identify the ants, and to Jessica Pearce-Duvet for editing the manuscript’s English. This study was funded by the Brazilian National Council for Scientific and Technological Development (CNPq; PELD 403770/2012-2, Universal 470480/2013-0), the Foundation for Science and Technology Support of the State of Pernambuco (FACEPE; APQ 06012.05/15, APQ 0738-2.05/12, and PRONEX 0138-2.05/14), and the Rufford Small Grants Foundation (RSG 17372-1). CNPq receives thanks from XA for his postdoctoral grants (PDS-167533/2013-4 and PDS-165623/2015-2), from ILHS for her PIBIC grant, and from IRL for her research grants (Produtividade 305611/2014-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Arnan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 301 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, I.L.H., Leal, I.R., Ribeiro-Neto, J.D. et al. Spatiotemporal responses of ant communities across a disturbance gradient: the role of behavioral traits. Insect. Soc. 66, 623–635 (2019). https://doi.org/10.1007/s00040-019-00717-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-019-00717-9

Keywords

Navigation