Sex ratio variations among years and breeding systems in a facultatively parthenogenetic termite

  • S. Hellemans
  • D. Fournier
  • R. Hanus
  • Y. Roisin
Research Article


Some species of termites evolved an outstanding reproductive strategy called asexual queen succession (AQS), in which the primary queen is replaced by multiple parthenogenetically produced daughters (neotenics) that mate with the primary king. When the primary king is eventually replaced, this time by sexually produced neotenic king(s), sex-asymmetric inbreeding occurs and the queen’s genome is more transmitted than that of the king, thereby increasing the reproductive value of female dispersers, and female-biased population sex ratio is expected. Yet, the life cycle, the breeding system dynamics and AQS modalities differ between AQS species, thereby modifying the relative genetic contribution of primary reproductives in the colony and thus also the equilibrium sex ratio. We estimated colonial and population sex ratio over two consecutive dispersal periods in a French Guiana population of Cavitermes tuberosus (Termitinae) in which the founding queen may be replaced only after colony maturity, some neotenic females may be sexually produced, and some female dispersers arise through parthenogenesis. Colonial sex ratio varied among colonies: primary-headed nests with higher within-nest relatedness produced more females than neotenic-headed nests with lower relatedness among individuals. Over the two dispersal periods, the population investment sex ratio fluctuated around 1:1, thereby confirming that AQS breeding system is not necessarily linked with female-biased sex ratio. The balanced alate sex ratio, combined with the occurrence of sexually produced neotenic queens, is possibly the outcome of a queen-king conflict between the primary reproductives.


Isoptera Parthenogenesis Asexual queen succession Sex ratio Conflict 



We are grateful to Philippe Cerdan, Régis Vigouroux, and the staff of the Laboratoire Environnement HYDRECO of Petit Saut (EDF-CNEH) for logistic support during the field work.

Authors’ contribution

SH, DF and YR designed the study. SH, RH and YR collected the material. SH performed the molecular laboratory work and genetic analyses. SH, DF and YR carried out the statistical analyses. All authors contributed significantly to the manuscript and approved the final version.


This work was supported by a PhD fellowship (SH) and grants from the Belgian National Fund for Scientific Research F.R.S.-FNRS (DF and YR: FRFC grant nos. 2.4594.12; DF: J.0110.17), the Research Mobility Project between the Belgian National Fund for Scientific Research FRS-FNRS and the Czech Academy of Sciences (RH and YR: FNRS-17-02) and the project RVO 61388963 (RH, IOCB, Prague).

Data Archiving

The full dataset of genotypes used is available in the Dryad Data Repository (

Supplementary material

40_2018_667_MOESM1_ESM.pdf (6.8 mb)
Supplementary material 1 (PDF 6974 KB)


  1. Aron S (2012) Primary sex ratio regulation by queens in ants (Formicidae) and other social Hymenoptera. Myrmecological News 17:63–80Google Scholar
  2. Boomsma JJ (1996) Split sex ratios and queen-male conflict over sperm allocation. Proc R Soc B 263:697–704CrossRefGoogle Scholar
  3. Boomsma JJ, Grafen A (1991) Colony-level sex ratio selection in the eusocial Hymenoptera. J Evol Biol 4:383–407CrossRefGoogle Scholar
  4. Boomsma JJ, Grafen A (1990) Intraspecific variation in ant sex ratios and the Trivers-Hare hypothesis. Evolution 44:1026–1034CrossRefPubMedGoogle Scholar
  5. Boomsma JJ, Nachman G (2002) Analysis of sex ratios in social insects. In: Hardy ICW (ed) Sex ratios: concepts and research methods. Cambridge University Press, Cambridge, pp 93–111CrossRefGoogle Scholar
  6. Bourguignon T, Šobotník J, Lepoint G, Martin JM, Hardy OJ, Dejean A, Roisin Y (2011) Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecol Entomol 36:261–269CrossRefGoogle Scholar
  7. Bourke AFG (2015) Sex investment ratios in eusocial Hymenoptera support inclusive fitness theory. J Evol Biol 28:2106–2111CrossRefPubMedGoogle Scholar
  8. Bourke AFG (2005) Genetics, relatedness and social behaviour in insect societies. In: Fellowes MDE, Holloway GJ, Rolff J (eds) Insect evolutionary ecology. CABI Publishing, Wallingford, pp 1–30Google Scholar
  9. Bourke AFG, Franks NR (1995) Social evolution in ants. Monographs in behavior and ecology. Princeton University Press, PrincetonGoogle Scholar
  10. Brown WD, Keller L (2000) Colony sex ratios vary with queen number but not relatedness asymmetry in the ant Formica exsecta. Proc R Soc B 267:1751–1757CrossRefPubMedGoogle Scholar
  11. Burnham KP, Anderson DR (2002) Model selection and multimodel inference. Springer-Verlag, New YorkGoogle Scholar
  12. Buxton RD (1981) Changes in the composition and activities of termite communities in relation to changing rainfall. Oecologia 51:371–378CrossRefPubMedGoogle Scholar
  13. Crozier RH, Pamilo P (1996) Evolution of social insect colonies. Sex allocation and kin selection. Oxford University Press, New YorkGoogle Scholar
  14. DeHeer CJ, Vargo EL (2006) An indirect test of inbreeding depression in the termites Reticulitermes flavipes and Reticulitermes virginicus. Behav Ecol Sociobiol 59:753–761CrossRefGoogle Scholar
  15. Deslippe RJ, Savolainen R (1995) Sex investment in a social insect: the proximate role of food. Ecology 76:375–382CrossRefGoogle Scholar
  16. Eggleton P (2011) An introduction to termites: biology, taxonomy and functional morphology. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 1–26Google Scholar
  17. Emerson AE (1925) The termites of Kartabo, Bartica District, British Guiana. Zoologica 6:291–459Google Scholar
  18. Fougeyrollas R, Dolejšová K, Sillam-Dussès D, Roy V, Hanus R, Roisin Y (2015) Asexual queen succession in the higher termite Embiratermes neotenicus. Proc R Soc B 282:20150260CrossRefPubMedGoogle Scholar
  19. Fougeyrollas R, Křivánek J, Roy V, Dolejšová K, Frechault S, Roisin Y, Hanus R, Sillam-Dussès D (2017) Asexual queen succession mediates an accelerated colony life cycle in the termite Silvestritermes minutus. Mol Ecol 26:3295–3308CrossRefPubMedGoogle Scholar
  20. Fournier D, Hanus R, Roisin Y (2015) Development and characterization of microsatellite markers from the humivorous termite Cavitermes tuberosus (Isoptera: Termitinae) using pyrosequencing technology. Conserv Genet Resour 7:521–524CrossRefGoogle Scholar
  21. Fournier D, Hellemans S, Hanus R, Roisin Y (2016) Facultative asexual reproduction and genetic diversity of populations in the humivorous termite Cavitermes tuberosus. Proc R Soc B 283:20160196CrossRefPubMedGoogle Scholar
  22. Fournier D, Keller L, Passera L, Aron S (2003) Colony sex ratios vary with breeding system but not relatedness asymmetry in the facultatively polygynous ant Pheidole pallidula. Evolution 57:1336–1342CrossRefPubMedGoogle Scholar
  23. Goodnight KF, Queller DC (2000) Relatedness 5.0.8. Goodnight Software, HoustonGoogle Scholar
  24. Hamilton WD (1964) The genetical evolution of social behaviour. I, II. J Theor Biol 7:1–52CrossRefGoogle Scholar
  25. Hellemans S, Bourguignon T, Kyjaková P, Hanus R, Roisin Y (2017a) Mitochondrial and chemical profiles reveal a new genus and species of Neotropical termite with snapping soldiers, Palmitermes impostor (Termitidae: Termitinae). Invertebr Syst 31:394–405. CrossRefGoogle Scholar
  26. Hellemans S, Fournier D, Hanus R, Roisin Y (2017b) Secondary queens in the parthenogenetic termite Cavitermes tuberosus develop through a transitional helper stage. Evol Dev 19:253–262CrossRefPubMedGoogle Scholar
  27. Hellemans S, Fournier D, Hanus R, Roisin Y (2016) Investigating key traits for AQS emergence in Termitinae. In: Proceedings of the 6th European meeting of the international union for the study of social insects. Helsinki, FinlandGoogle Scholar
  28. Helms KR, Fournier D, Keller L, Passera L, Aron S (2004) Colony sex ratios in the facultatively polygynous ant Pheidole pallidula: a reanalysis with new data. Evolution 58:1141–1142CrossRefPubMedGoogle Scholar
  29. Herfs A (1951) Der Schwarmflug von Reticulitermes lucifugus Rossi. Zeitschrift fuer Angew Entomol 33:69–77CrossRefGoogle Scholar
  30. Howard KJ, Thorne BL (2011) Eusocial evolution in termites and hymenoptera. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 97–132Google Scholar
  31. Jiménez-Muñoz JC, Mattar C, Barichivich J, Santamaría-Artigas A, Takahashi K, Malhi Y, Sobrino JA, van der Schrier G (2016) Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci Rep 6:33130CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jones SC, La Fage JP, Howard RW (1988) Isopteran sex ratios: phylogenetic trends. Sociobiology 14:89–156Google Scholar
  33. Josens G (1982) Le bilan énergétique de Trinervitermes geminatus Wasmann (Termitidae, Nasutitermitinae). I. Mesures de biomasses, d’équivalents énergétiques, de longévité et de production en laboratoire. Insectes Soc 29:297–307Google Scholar
  34. Kawatsu K (2013) Sexual conflict over the maintenance of sex: effects of sexually antagonistic coevolution for reproductive isolation of parthenogenesis. PLoS One 8:e58141CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kobayashi K, Hasegawa E, Yamamoto Y, Kawatsu K, Vargo EL, Yoshimura J, Matsuura K (2013) Sex ratio biases in termites provide evidence for kin selection. Nat Commun 4:2048CrossRefPubMedGoogle Scholar
  36. Krishna K, Grimaldi DA, Krishna V, Engel MS (2013a) Treatise on the Isoptera of the World. 6. Termitidae (Part Three), Incertae sedis, taxa excluded from Isoptera. Bull Am Museum Nat Hist 377:1989–2432CrossRefGoogle Scholar
  37. Krishna K, Grimaldi DA, Krishna V, Engel MS (2013b) Treatise on the Isoptera of the World. 1. Introduction. Bull Am Museum Nat Hist 377:1–200CrossRefGoogle Scholar
  38. Kümmerli R, Keller L (2011) Between-year variation in population sex ratio increases with complexity of the breeding system in Hymenoptera. Am Nat 177:835–846CrossRefPubMedGoogle Scholar
  39. Lacy RC (1980) The evolution of eusociality in termites: a haplodiploid analogy? Am Nat 116:449–451CrossRefGoogle Scholar
  40. Lenz M, Runko S (1993) Long-term impact of orphaning on field colonies of Coptotermes lacteus (Froggatt) (Isoptera: Rhinotermitidae). Insectes Soc 40:439–456CrossRefGoogle Scholar
  41. Luchetti A, Velonà A, Mueller M, Mantovani B (2013) Breeding systems and reproductive strategies in Italian Reticulitermes colonies (Isoptera: Rhinotermitidae). Insectes Soc 60:203–211CrossRefGoogle Scholar
  42. Mathews AGA (1977) Studies on Termites from the Mato Grosso State, Brazil. Academia Brasileira de Ciências, Rio de JaneiroGoogle Scholar
  43. Matsuura K (2011) Sexual and asexual reproduction in termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 255–277Google Scholar
  44. Matsuura K (2017) Evolution of asexual queen succession system and its underlying mechanisms in termites. J Exp Biol 220:63–72CrossRefPubMedGoogle Scholar
  45. Matsuura K, Vargo EL, Kawatsu K, Labadie PE, Nakano H, Yashiro T, Tsuji K (2009) Queen succession through asexual reproduction in termites. Science 323:1687CrossRefPubMedGoogle Scholar
  46. Matsuura K, Mizumoto N, Kobayashi K, Nozaki T, Fujita T, Yashiro T, Fuchikawa T, Mitaka Y, Vargo EL (2018) A genomic imprinting model of termite caste determination: not genetic but epigenetic inheritance influences offspring caste fate. Am Nat 191:677–690CrossRefPubMedGoogle Scholar
  47. McMahan EA, Sen-Sarma PK, Kumar S (1983) Biometric, polyethism, and sex ratio studies of Nasutitermes dunensis Chatterjee and Thakur (Isoptera: Termitidae). Ann Entomol 1:15–25Google Scholar
  48. Myles TG (1999) Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33:1–91Google Scholar
  49. Nielsen MG, Josens G (1978) Production by ants and termites. In: Brian MV (eds) Production ecology of ants and termites. Cambridge University Press, Cambridge, pp 45–53Google Scholar
  50. Noirot C (1955) Recherches sur le polymorphisme des termites supérieurs. Ann des Sci Nat Zool (11ème série) 27:399–595Google Scholar
  51. Nutting WL (1969) Flight and colony foundation. In: Krishna K, Weesner FM (eds) Biology of termites, vol 1. Academic Press, New-York, pp 233–282CrossRefGoogle Scholar
  52. Peakall R, Smouse PE (2012) GenALEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  53. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  54. Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275CrossRefPubMedGoogle Scholar
  55. R Development Core Team (2015) R: a language and environment for statistical computing, Vienna, AustriaGoogle Scholar
  56. Roisin Y (2001) Caste sex ratios, sex linkage, and reproductive strategies in termites. Insectes Soc 48:224–230CrossRefGoogle Scholar
  57. Roisin Y (2000) Diversity and evolution of caste patterns. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 95–119CrossRefGoogle Scholar
  58. Roisin Y, Korb J (2011) Social organisation and the status of workers in termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 133–164Google Scholar
  59. Roisin Y, Lenz M (2002) Origin of male-biased sex allocation in orphaned colonies of the termite, Coptotermes lacteus. Behav Ecol Sociobiol 51:472–479CrossRefGoogle Scholar
  60. Roonwal ML (1975) Sex ratios and sexual dimorphism in termites. J Sci Ind Res (India) 34:402–416Google Scholar
  61. Sands WA (1965) A late development and colony foundation in five species of Trinervitermes (Isoptera, Nasutitermitinae) in Nigeria, West Africa. Insectes Soc 12:117–130CrossRefGoogle Scholar
  62. Sulca J, Takahashi K, Espinoza JC et al (2018) Impacts of different ENSO flavors and tropical Pacific convection variability (ITCZ, SPCZ) on austral summer rainfall in South America, with a focus on Peru. Int J Climatol 38:420–435CrossRefGoogle Scholar
  63. Thorne BL (1983) Alate production and sex ratio in colonies of the Neotropical termite Nasutitermes corniger (Isoptera; Termitidae). Oecologia 58:103–109CrossRefPubMedGoogle Scholar
  64. Trivers R, Hare H (1976) Haplodiploidy and the evolution of the social insects. Science 191:249–263CrossRefPubMedGoogle Scholar
  65. Trivers R, Willard DE (1973) Natural selection of parental ability to vary the sex ratio of offspring. Science 179:90–92CrossRefPubMedPubMedCentralGoogle Scholar
  66. Tsuji K (1996) Queen-male conflict over sperm use in social insects. Trends Ecol Evol 11:490–491CrossRefPubMedGoogle Scholar
  67. Vanthournout B, Busck MM, Bechsgaard J, Hendrickx F, Schramm A, Bilde T (2018) Male spiders control offspring sex ratio through greater production of female-determining sperm. Proc R Soc B 285:20172887CrossRefPubMedGoogle Scholar
  68. Vargo EL, Labadie PE, Matsuura K (2012) Asexual queen succession in the subterranean termite Reticulitermes virginicus. Proc R Soc B Biol Sci 279:813–819CrossRefGoogle Scholar
  69. Vincke PP, Tilquin JP (1978) A sex-linked ring quadrivalent in Termitidae (Isoptera). Chromosoma 67:151–156CrossRefGoogle Scholar
  70. Wild G, Taylor PD (2005) A kin-selection approach to the resolution of sex-ratio conflict between mates. J Theor Biol 236:126–136CrossRefPubMedGoogle Scholar
  71. Yanega D (1993) Environmental influences on male production and social structure in Halictus rubicundus (Hymenoptera: Halictidae). Insectes Soc 40:169–180CrossRefGoogle Scholar
  72. Yashiro T, Matsuura K (2014) Termite queens close the sperm gates of eggs to switch from sexual to asexual reproduction. Proc Natl Acad Sci USA 111:17212–17217CrossRefPubMedGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2018

Authors and Affiliations

  1. 1.Evolutionary Biology and EcologyUniversité libre de BruxellesBrusselsBelgium
  2. 2.Chemistry of Social Insects, Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrague 6Czech Republic

Personalised recommendations