Abstract
Cuticular hydrocarbons (CHCs) of social insects have typically been studied for their roles in reproductive signaling (i.e., fertility) rather than sexual signaling (i.e., interest in mating), resulting in little information about CHCs of males and virgin females. This dearth of information applies particularly to social wasps. We tested the hypothesis that CHCs differentiate sex, caste, and nest membership in each of four yellowjacket species (baldfaced hornets, Dolichovespula maculata; southern yellowjackets, Vespula squamosa; western yellowjackets, V. pensylvanica; V. alascensis). Cold-euthanized queens (21), gynes (81), workers (125), and males (77) from 35 nests were extracted with pentane, and each of the resulting 304 extracts was analyzed by gas chromatography (GC) and GC–mass spectrometry to identify and quantify CHC constituents (aliphatic alkanes and alkenes; mono-, di-, and tri-methyl-branched alkanes). To determine whether caste and sex differ in CHC profiles of wasps, linear discriminant analyses were performed, using Z-transformed relative CHC peak areas as predictor variables and sex and caste, or nest, as grouping variables. When caste and sex were used as a grouping variable, plots of the first two discriminant functions revealed that wasps from each of the four species clustered into their respective groups (queens, gynes, workers, males), with significant differences in group centroids, as measured by Wilks’ lambda. When nest was used as a grouping variable, plots of the first two discriminant functions revealed that workers from each of the four species and males from each of three species (insufficient sample size for V. pensylvanica) clustered according to nest. Diagnostic power calculations show greater inter-caste than inter-nest variation. Our data support the above hypothesis and inspire future studies to determine the definitive role(s) that gyne- and male-specific CHCs play in the context of sexual communication, from the perspective of both males and females.



References
Aitchison J (1986) The statistical analysis of compositional data. Chapman and Hall, London
Akre RD, Greene A, MacDonald JF et al (1981) The yellowjackets of America north of Mexico. USDA Agric Handb 552:1–102
Blomquist GJ, Bagnéres A-G (eds) (2010) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, New York
Bonckaert W, Drijfhout FP, d’Ettorre P, Billen J, Wnseleers T (2012) Hydrocarbon signatures of egg maternity, caste membership and reproductive status in the common wasp. J Chem Ecol 38:42–51. https://doi.org/10.1007/s10886-011-0055-9
Brown RL, El-Sayed AM, Suckling MD, Stringer LD, Beggs JR (2013) Vespula vulgaris (Hymenoptera: Vespidae) gynes use a sex pheromone to attract males. Can Entomol 145:1–9. https://doi.org/10.4039/tce.2013.8
Butts DP, Espelie KE, Hermann HR (1991) Cuticular hydrocarbons of four species of social wasps in the subfamily Vespinae: Vespa crabro L., Dolichovespula maculata (L.). Vespula squamosa (Drury), and Vespula maculifrons (Buysson). Comp Biochem Physiol B Comp Biochem 99:87–91
Cournault L, de Biseau JC (2009) Hierarchical perception of fertility signals and nestmate recognition cues in two dolichoderine ants. Behav Ecol Sociobiol 63:1635–1641. https://doi.org/10.1007/s00265-009-0769-7
Chuine A, Sauzet S, Debias F, Desouhant E (2015) Consequences of genetic incompatibility on fitness and mate choice: the male point of view. Biol J Linnean Soc 114:279–286. https://doi.org/10.1111/bij.12421
de Biseau J-C, Passera L, Daloze D, Aron S (2004) Ovarian activity correlates with extreme changes in cuticular hydrocarbon profile in the highly polygynous ant, Linepithema humile. J Insect Physiol 50:585–593. https://doi.org/10.1016/j.jinsphys.2004.04.005
Derstine N, Ohler B, Jimenez SI, Landolt PJ, Gries G (2017) Evidence for sex pheromones and inbreeding avoidance in select North American yellowjacket species (Hymenoptera: Vespidae). Entomol Exp Appl 164:34–44. https://doi.org/10.1111/eea.1259
Dietemann V, Peeters C, Liebig J, Thivet V, Hölldobler B (2003) Cuticular hydrocarbons mediate discrimination of reproductives and nonreproductives in the ant Myrmecia gulosa. Proc Natl Acad Sci USA 100:10341–10346. https://doi.org/10.1073/pnas.1834281100
Dunkelblum E, Tan SH, Silk PJ (1985) Double-bond location in monounsaturated fatty acids by dimethyl disulfide derivatization and mass spectrometry: application to analysis of fatty acids in pheromone glands of four lepidoptera. J Chem Ecol 11:265–277. https://doi.org/10.1007/BF01411414
Ferreira-Caliman MJ, Nascimento FS, Turatti IC, Mateus S, Lopes NP, Zucchi R (2010) The cuticular hydrocarbons profiles in the stingless bee Melipona marginata reflect task-related differences. J Insect Physiol 56:800–804. https://doi.org/10.1016/j.jinsphys.2010.02.004
Foster KR, Ratnieks FLW (2001) Paternity, reproduction and conflict in vespine wasps: a model system for testing kin selection predictions. Behav Ecol Sociobiol 50:1–8. https://doi.org/10.1007/s002650100336
Heimpel GE, de Boer JG (2008) Sex determination in the hymenoptera. Annu Rev Entomol 53:209–230. https://doi.org/10.1146/annurev.ento.53.103106.093441
Holman L, Jørgensen CG, Nielsen J, d’Ettorre P (2010) Identification of an ant queen pheromone regulating worker sterility. Proc Biol Sci 277:3793–3800. https://doi.org/10.1098/rspb.2010.0984
Howard RW, Blomquist GJ (1982) Chemical ecology and biochemistry of insect hydrocarbons. Annu Rev Entomol 27:149–172
Jimenez SI, Gries R, Zhai H, Derstine N, McCann S, Gries G (2016) Evidence for, and identification of, nest defense pheromone components of bald-faced hornets, Dolichovespula maculata. J Chem Ecol 42:414–424. https://doi.org/10.1007/s10886-016-0699-6
Ingleby FC (2015) Insect cuticular hydrocarbons as dynamic traits in sexual communication. Insects 6:732–742. https://doi.org/10.3390/insects6030732
Kimsey LS, Carpenter JM (2012) The vespinae of North America (Vespidae, Hymenoptera). J Hymenopt Res 65:37–65. https://doi.org/10.3897/JHR.28.3514
Lahav S, Soroker V, Vander Meer RK, Hefetz A (1998) Nestmate recognition in the ant Cataglyphis niger: do queens matter? Behav Ecol Sociobiol 43:203–212
Landolt PJ, Reed HC, Landolt KN, Sierra JM, Zack RS (2009) The southern yellowjacket, Vespula squamosa (Drury) (Hymenoptera: Vespidae) in Guatemala, Central America. Proc Entomol Soc Washingt 111:426–432. https://doi.org/10.4289/0013-8797-111.2.426
Liebig J (2010) Hydrocarbon profiles indicate fertility and dominance status in ant, bee, and wasp colonies. In: Blomquist GJ, Bagnéres A-G (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology, 1st edn. Cambridge University Press, New York, pp 254–282
Liebig J, Eliyahu D, Brent CS (2009) Cuticular hydrocarbon profiles indicate reproductive status in the termite Zootermopsis nevadensis. Behav Ecol Sociobiol 63:1799–1807. https://doi.org/10.1007/s00265-009-0807-5
Meskali M, Bonavita-Cougourdan A, Provost E, Bagnéres AG, Dusticier G, Clément JL (1995) Mechanism underlying cuticular hydrocarbon homogeneity in the ant Camponotus vagus (SCOP.) (Hymenoptera: Formicidae): role of postpharyngeal glands. J Chem Ecol 21:1127–1148. https://doi.org/10.1007/BF02228316
Metzger M, Bernstein C, Hoffmeister TS, Desouhant E (2010) Does kin recognition and sib-mating avoidance limit the risk of genetic incompatibility in a parasitic wasp? PloS One 5(10):e13505. https://doi.org/10.1371/journal.pone.0013505
Oi CA, Millar JG, van Zweden JS, Wenseleers T (2016) Conservation of queen pheromones across two species of vespine wasps. J Chem Ecol 42:1175–1180. https://doi.org/10.1007/s10886-016-0777-9
Oi CA, van Zweden JS, Oliveira RC, Oystaeyen AV, Nascimento FS, Wenseleers T (2015) The origin and evolution of social insect queen pheromones: novel hypotheses and outstanding problems. BioEssays 37:808–821. https://doi.org/10.1002/bies.201400180
Oliveira RC, Oi CA, Nascimento MMC, Vollet-Neto A, Alves DA, Campos MC, Nascimento F, Wenseleers T (2015) The origin and evolution of queen and fertility signals in corbiculate bees. BMC Evol Biol 15:254. https://doi.org/10.1186/s12862-015-0509-8
Ozaki M, Wada-Katsumata A, Fujikawa K, Iwasaki M, Yokohari F, Satoji Y, Nisimura T, Yamaoka R (2005) Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 309:311–314. https://doi.org/10.1126/science.1105244
Reed HC, Landolt P (1990) Queens of the Southern yellowjacket, Vespula squamosa, produce sex attractant (Hymenoptera: Vespidae). Fla Entomol 73:687–689
Riesch R, Muschick M, Lindtke D, Villoutreix R, Comeault AA, Farkas TE, Lucek K, Hellen E, Soria_Carrasco V, Dennis SR, de Carvalho CF, Safran RJ, Sandoval CP, Feder J, Gries R, Crespi BJ, Gries G, Gompert Z, Nosil P (2017) Transitions between phases of genomic differentiation during stick-insect speciation. Nat Ecol Evol 1:0082. https://doi.org/10.1038/s41559-017-0082
Ruther J, Sieben S, Schricker B (2002) Nestmate recognition in social wasps: Manipulation of hydrocarbon profiles induces aggression in the European hornet. Naturwissenschaften 89:111–114. https://doi.org/10.1007/s00114-001-0292-9
Schwander T, Arbuthnott D, Gries R, Gries G, Nosil P, Crespi BJ (2013) Hydrocarbon divergence and reproductive isolation in Timema stick insects. BMC Evol Biol 13:151. https://doi.org/10.1186/1471-2148-13-151
Smith AA, Millar JG, Hanks LM, Suarez AV (2013) A conserved fertility signal despite population variation in the cuticular chemical profile of the trap-jaw ant Odontomachus brunneus. J Exp Biol 216:3917–3924. https://doi.org/10.1242/jeb.089482
Soroker V, Fresneau D, Hefetz A (1998) Formation of colony odor in ponerine ant Pachycondyla apicalis. J Chem Ecol 24:1077–1090. https://doi.org/10.1023/A:1022306620282
Soroker V, Vienne C, Hefetz A (1995) Hydrocarbons dynamics within and between nestmates in Cataglyphis niger (Hymenoptera: Formicidae). J Chem Ecol 21:365–378. https://doi.org/10.1007/BF02036724 doi
Soroker V, Vienne C, Hefetz A, Nowbahari E (1994) The postpharyngeal gland as a “Gestalt” organ for nestmate recognition in the ant Cataglyphis niger. Naturwissenschaften 81:510–513. https://doi.org/10.1007/s001140050120
Sramkova A, Schulz C, Twele R, Francke W, Ayasse M (2008) Fertility signals in the bumblebee Bombus terrestris (Hymenoptera: Apidae). Naturwissenschaften 95:515–522. https://doi.org/10.1007/s00114-008-0353-4
Steiger S, Ower GD, Stökl J, Mitchell C, Hunt J, Sakaluk SK (2013) Sexual selection on cuticular hydrocarbons of male sagebrush crickets in the wild. Proc Biol Sci 280:20132353. https://doi.org/10.1098/rspb.2013.2353
Steiger S, Peschke K, Francke W, Müller JK (2007) The smell of parents: breeding status influences cuticular hydrocarbon pattern in the burying beetle Nicrophorus vespilloides. Proc Biol Sci 274:2211–2220. https://doi.org/10.1098/rspb.2007.0656
van Den Dool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J Chromatogr A 11:463–471
Van Oystaeyen A, Oliveira RC, Holman L, van Zweden JS, Romero C, Oi CA, d’Ettorre P, Khalesi M, Billen J, Wäckers F, Millar JG, Wenseleers T (2014) Conserved class of queen pheromones stops social insect workers from reproducing. Science 343:287–290. https://doi.org/10.1126/science.1244899
van Wilgenburg E, Driessen G, Beukeboom LW (2006) Single locus complementary sex determination in Hymenoptera: an “unintelligent” design. Front Zool 3:1. https://doi.org/10.1186/1742-9994-3-1
van Zweden JS, Bonckaert W, Wenseleers T, d’Ettorre P (2014) Queen signaling in social wasps. Evolution 68:976–986. https://doi.org/10.1111/evo.12314
Van Zweden JS, Brask JB, Christensen JH, Boomsma JJ, Linksvayer TA, d’Ettore P (2010) Blending of heritable recognition cues among ant nestmates creates distinct colony gestalt odours but prevents within-colony nepotism. J Evol Biol 23:1498–1508. https://doi.org/10.1111/j.1420-9101.2010.02020.x
van Zweden JS, Ettorre P (2010) Nestmate recognition in social insects and the role of hydrocarbons. In: Blomquist GJ, Bagnéres A-G (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology, 1st edn. Cambridge University Press, New York, pp 222–243
van Zweden JS, Heinze J, Boomsma JJ, d’Ettorre P (2009) Ant queen egg-marking signals: matching deceptive laboratory simplicity with natural complexity. PLoS One 4:e4718. https://doi.org/10.1371/journal.pone.0004718
van Zweden JS, Pontieri L, Pedersen JS (2014b) A statistical approach to identify candidate cues for nestmate recognition. Front Ecol Evol 2:1–11. https://doi.org/10.3389/fevo.2014.00073
Vienne C, Soroker V, Hefetz A (1995) Congruency of hydrocarbon patterns in heterospecific groups of ants: transfer and/or biosynthesis? Insectes Soc 42:267–277. https://doi.org/10.1007/BF01240421
Wagner D, Tissot M, Cuevas W, Gordon DM (2000) Harvester ants utilize cuticular hydrocarbons in nestmate recognition. J Chem Ecol 26:2245–2257
Zayed A, Packer L (2005) Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proc Natl Acad Sci USA 102:10742–10746. https://doi.org/10.1073/pnas.0502271102
Acknowledgements
We thank Alejandro Córdoba-Aguilar, Alejandro Daniel Camacho Vera, Alejandro Zaldívar-Riverón, and María Cristina Mayorga Martínez, as well as the Escuela Nacional de Ciencias Biológicas from the Instituto Politécnico Nacional and the Instituto de Biología and Instituto de Ecología from Universidad Nacional Autónoma de México, for their advice and support in acquiring the permits (SGPA/DGVS/10989/14 dated 04 Nov 2014, SGPA/DGVS/12972/14 dated 09 Dec 2014, SAGARPA 4090687366 dated 05 Dec 2014) from the Mexican federal authorities SEMARNAT and SAGARPA, and for access to entomological museums to find V. squamosa populations; citizens of the municipality of Santiago Apoala, Oaxaca, for their support in locating V. squamosa nests and for facilitating field research on their properties. The research was supported by Graduate Fellowships from Simon Fraser University to ND, and by an NSERC—Industrial Research Chair to GG, with Scotts Canada Ltd. as the industrial sponsor.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Derstine, N.T., Gries, R., Zhai, H. et al. Cuticular hydrocarbons determine sex, caste, and nest membership in each of four species of yellowjackets (Hymenoptera: Vespidae). Insect. Soc. 65, 581–591 (2018). https://doi.org/10.1007/s00040-018-0649-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00040-018-0649-0