Abstract
T- and Y-mazes are powerful tools for studying the behavioural ecology and cognition of animals, especially ants. Such mazes are cheap, easy to deploy, and very flexible, allowing diverse subjects to be studied. These include cue and route learning, pheromone following, and testing for cognitive abilities such as associative and concept learning. However, while simple, the use of bifurcation mazes has many pitfalls, especially for ants which deposit pheromone trails. In this methods primer, I discuss the strengths and limitations of using bifurcation mazes to study ant behaviour, and outline some of the pitfalls to be avoided. I also provide a description of a suggested Y-maze design, and methodological details about using Y-mazes to study associative learning, route learning, and trail pheromone following. Although the description of the uses of bifurcation mazes, and their pitfalls, is not exhaustive, this methods primer hopes to be of use to both beginners and more experienced researchers in designing and deploying bifurcation mazes in their research. While primarily aimed at myrmecologists, much of the content of this methods primer will be broadly applicable to animal behavioural research.
This is a preview of subscription content, access via your institution.
References
Aron S, Beckers R, Deneubourg J, Pasteels JM (1993) Memory and chemical communication the orientation of two mass-recruiting ant species. Insect Soc 40:369–380. https://doi.org/10.1007/BF01253900
Avarguès-Weber A, Chittka L (2014) Local enhancement or stimulus enhancement? Bumblebee social learning results in a specific pattern of flower preference. Anim Behav 97:185–191. https://doi.org/10.1016/j.anbehav.2014.09.020
Avarguès-Weber A, Sanchez MGB de, Giurfa M, Dyer AG (2010) Aversive reinforcement improves visual discrimination learning in free-flying honeybees. PLoS One 5:e15370. https://doi.org/10.1371/journal.pone.0015370
Becker G, Mannesmann R (1968) Untersuchungen über das Verhalten von Termiten gegenüber einigen spurbildenden Stoffen. J Appl Entomol 62:399–436
Beckers R, Deneubourg JL, Goss S (1993) Modulation of trail laying in the ant Lasius niger (Hymenoptera: Formicidae) and its role in the collective selection of a food source. J Insect Behav 6:751–759. https://doi.org/10.1007/BF01201674
Bernadou A, Fourcassié V (2008) Does substrate coarseness matter for foraging ants? An experiment with Lasius niger (Hymenoptera; Formicidae). J Insect Physiol 54:534–542. https://doi.org/10.1016/j.jinsphys.2007.12.001
Bernadou A, Heinze J (2013) Mating-associated changes in the behaviour of Leptothorax gredleri ant queens. Ethology 119:634–643. https://doi.org/10.1111/eth.12103
Birch AJ, Chamberlain KB, Moore BP, Powell VH (1970) Termite attractants in Santalum spicatum. Aust J Chem 23:2337–2341. https://doi.org/10.1071/ch9702337
Casellas E, Gautrais J, Fournier R et al (2008) From individual to collective displacements in heterogeneous environments. J Theor Biol 250:424–434. https://doi.org/10.1016/j.jtbi.2007.10.011
Chen J, Henderson G, Laine RA (1998) Isolation and Identification of 2-phenoxyethanol from a ballpoint pen ink as a trail-following substance of Coptotermes formosanus Shiraki and Reticulitermes sp. J Entomol Sci 33:97–105. https://doi.org/10.18474/0749-8004-33.1.97
Cherrett JM (1972) Chemical aspects of plant attack by leaf-cutting ants. Phytochemical ecology. Academic Press, London, pp 13–24
Choe D-H, Villafuerte DB, Tsutsui ND (2012) Trail pheromone of the argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae). PLoS One 7:e45016. https://doi.org/10.1371/journal.pone.0045016
Crawley M (2007) The R Book, 1st edn. Wiley, Chichester
Czaczkes TJ, Beckwith JJ (2018) Information synergy: adding unambiguous quality information rescues social information use in ants. bioRxiv. https://doi.org/10.1101/219980
Czaczkes TJ, Ratnieks FLW (2012) Pheromone trails in the Brazilian ant Pheidole oxyops: extreme properties and dual recruitment action. Behav Ecol Sociobiol 66:1149–1156. https://doi.org/10.1007/s00265-012-1367-7
Czaczkes TJ, Grüter C, Ratnieks FLW (2013) Ant foraging on complex trails: route learning and the role of trail pheromones in Lasius niger. J Exp Biol 216:188–197. https://doi.org/10.1242/jeb.076570
Czaczkes TJ, Schlosser L, Heinze J, Witte V (2014) Ants use directionless odour cues to recall odour-associated locations. Behav Ecol Sociobiol 68:981–988. https://doi.org/10.1007/s00265-014-1710-2
Czaczkes TJ, Czaczkes B, Iglhaut C, Heinze J (2015a) Composite collective decision-making. Proc R Soc B Biol Sci 282:20142723
Czaczkes TJ, Franz S, Witte V, Heinze J (2015b) Perception of collective path use affects path selection in ants. Anim Behav 99:15–24. https://doi.org/10.1016/j.anbehav.2014.10.014
Czaczkes TJ, Castorena M, Schürch R, Heinze J (2017) Pheromone trail following in the ant Lasius niger: high accuracy and variability but no effect of task state. Physiol Entomol 42:91–97. https://doi.org/10.1111/phen.12174
Czaczkes TJ, Brandstetter B, di Stefano I, Heinze J (2018a) Greater effort increases perceived value in an invertebrate. J Comp Psychol. https://doi.org/10.1037/com0000109
Czaczkes TJ, Koch A, Fröber K, Dreisbach G (2018b) Voluntary switching in an invertebrate: the effect of cue and reward change. J Exp Psychol Anim Learn Cogn. https://doi.org/10.1037/xan0000171
Darland T, Dowling JE (2001) Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad Sci 98:11691–11696. https://doi.org/10.1073/pnas.191380698
Deacon RMJ, Rawlins JNP (2006) T-maze alternation in the rodent. Nat Protoc 1:7–12. https://doi.org/10.1038/nprot.2006.2
Dember WN, Fowler H (1958) Spontaneous alternation behavior. Psychol Bull 55:412–428. https://doi.org/10.1037/h0045446
Detrain C, Deneubourg J-L, Pasteels JM (1999) Decision-making in foraging by social insects. Information processing in social insects. Springer, Berlin, pp 331–354
Devigne C, Detrain C (2002) Collective exploration and area marking in the ant Lasius niger. Insect Soc 49:357–362
Devigne C, Renon A, Detrain C (2004) Out of sight but not out of mind: modulation of recruitment according to home range marking in ants. Anim Behav 67:1023–1029. https://doi.org/10.1016/j.anbehav.2003.09.012
Dingle H (1962) The occurrence of correcting behavior in various insects. Ecology 43:727–728
Dupuy F, Sandoz J-C, Giurfa M, Josens R (2006) Individual olfactory learning in Camponotus ants. Anim Behav 72:1081–1091. https://doi.org/10.1016/j.anbehav.2006.03.011
Dussutour A, Deneubourg J-L, Fourcassié V (2005) Amplification of individual preferences in a social context: the case of wall-following in ants. Proc R Soc B Biol Sci 272:705–714. https://doi.org/10.1098/rspb.2004.2990
Edwards JP, Pinniger DB (1978) Evalutiaon of four isomers of 3-butyl-5-methloctahydroindoliz, a component of the trail pheromone of pharaoh’s ant, Monomorium pharaonis. Ann Appl Biol 89:395–399. https://doi.org/10.1111/j.1744-7348.1978.tb05965.x
Falibene A, Josens R (2011) Sucrose acceptance threshold: a way to measure sugar perception in ants. Insect Soc. https://doi.org/10.1007/s00040-011-0190-x
Forster A, Czaczkes TJ, Warner E et al (2014) Effect of trail bifurcation asymmetry and pheromone presence or absence on trail choice by Lasius niger ants. Ethology 120:768–771. https://doi.org/10.1111/eth.12248
Fourcassie V, Beugnon G (1988) How do red wood ants orient when foraging in a three dimensional system? I. Laboratory experiments. Insect Soc 35:92–105. https://doi.org/10.1007/BF02224141
Fourcassié V, Deneubourg JL (1994) The dynamics of collective exploration and trail-formation in Monomorium pharaonis: experiments and model. Physiol Entomol 19:291–300. https://doi.org/10.1111/j.1365-3032.1994.tb01055.x
Garnier S, Guérécheau A, Combe M et al (2009) Path selection and foraging efficiency in Argentine ant transport networks. Behav Ecol Sociobiol 63:1167–1179. https://doi.org/10.1007/s00265-009-0741-6
Gerbier G, Garnier S, Rieu C et al (2008) Are ants sensitive to the geometry of tunnel bifurcation? Anim Cogn 11:637–642. https://doi.org/10.1007/s10071-008-0153-4
Gissel Nielsen M (2001) Energetic cost of foraging in the ant Rhytidoponera aurata in tropical Australia. Physiol Entomol 26:248–253
Giurfa M, Hammer M, Stach S et al (1999) Pattern learning by honeybees: conditioning procedure and recognition strategy. Anim Behav 57:315–324. https://doi.org/10.1006/anbe.1998.0957
Giurfa M, Zhang S, Jenett A et al (2001) The concepts of ‘sameness’ and ‘difference’ in an insect. Nature 410:930–933. https://doi.org/10.1038/35073582
Graham P, Collett TS (2006) Bi-directional route learning in wood ants. J Exp Biol 209:3677–3684. https://doi.org/10.1242/jeb.02414
Graham P, Fauria K, Collett TS (2003) The influence of beacon-aiming on the routes of wood ants. J Exp Biol 206:535–541. https://doi.org/10.1242/jeb.00115
Greenwald E, Segre E, Feinerman O (2015) Ant trophallactic networks: simultaneous measurement of interaction patterns and food dissemination. Sci Rep. https://doi.org/10.1038/srep12496
Grüter C, Czaczkes TJ, Ratnieks FLW (2011) Decision making in ant foragers (Lasius niger) facing conflicting private and social information. Behav Ecol Sociobiol 64:141–148. https://doi.org/10.1007/s00265-010-1020-2
Guerrieri FJ, d’Ettorre P (2010) Associative learning in ants: conditioning of the maxilla–labium extension response in Camponotus aethiops. J Insect Physiol 56:88–92. https://doi.org/10.1016/j.jinsphys.2009.09.007
Guerrieri FJ, d’Ettorre P (2008) The mandible opening response: quantifying aggression elicited by chemical cues in ants. J Exp Biol 211:1109–1113. https://doi.org/10.1242/jeb.008508
Hagler JR, Jackson CG (2001) Methods for marking insects: current techniques and future prospects. Annu Rev Entomol 46:511–543
Hangartner W (1969) Orientierung von Lasius fuliginosus Latr. An Einer Gabelung der Geruchsspur. Insect Soc 16:55–60
Harrison JF, Fewell JH, Stiller TM, Breed MD (1989) Effects of experience on use of orientation cues in the giant tropical ant. Anim Behav 37:869–871. https://doi.org/10.1016/0003-3472(89)90076-6
Heinze J (1993) How to immobilize an ant. Insect Soc 40:231–232. https://doi.org/10.1007/BF01240710
Helanterä H, Walsh CJ, Ratnieks FLW (2011) Effect of foraging trail straightness on U-turning probability in forager Pharaoh’s ants. Sociobiology 57:445–449
Hillery AE, Fell RD (2000) Chemistry and behavioral significance of rectal and accessory gland contents in Camponotus pennsylvanicus (Hymenoptera: Formicidae). Ann Entomol Soc Am 93:1294–1299
Hölldobler B, Braun U, Gronenberg W et al (1994) Trail communication in the ant Megaponera foetens (Fabr.) (Formicidae, Ponerinae). J Insect Physiol 40:585–593
Hölldobler B, Wilson EO (1977) Weaver ants: social establishment and maintenance of territory. Science 195:900–902. https://doi.org/10.1126/science.841318
Holman L, Head ML, Lanfear R, Jennions MD (2015) Evidence of experimental bias in the life sciences: why we need blind data recording. PLoS Biol 13:e1002190. https://doi.org/10.1371/journal.pbio.1002190
Hughes RN (1967) Turn alternation in woodlice (Porcellio scaber). Anim Behav 15:282–286. https://doi.org/10.1016/0003-3472(67)90013-9
Hunt ER, O’Shea-Wheller T, Albery GF et al (2014) Ants show a leftward turning bias when exploring unknown nest sites. Biol Lett 10:20140945. https://doi.org/10.1098/rsbl.2014.0945
Jackson DE, Holcombe M, Ratnieks FLW (2004) Trail geometry gives polarity to ant foraging networks. Nature 432:907–909. https://doi.org/10.1038/nature03105
Jackson DE, Martin SJ, Holcombe M, Ratnieks FLW (2006) Longevity and detection of persistent foraging trails in Pharaoh’s ants, Monomorium pharaonis (L.). Anim Behav 71:351–359. https://doi.org/10.1016/j.anbehav.2005.04.018
Jander R (1990) Arboreal search in ants: search on branches (Hymenoptera: Formicidae). J Insect Behav 3:515–527. https://doi.org/10.1007/BF01052015
Jeanson R, Ratnieks FLW, Deneubourg JL (2003) Pheromone trail decay rates on different substrates in the Pharaoh’s ant, Monomorium pharaonis. Physiol Entomol 28:192–198. https://doi.org/10.1046/j.1365-3032.2003.00332.x
Jones RB, Marin RH, Garcia DA, Arce A (1999) T-maze behaviour in domestic chicks: a search for underlying variables. Anim Behav 58:211–217. https://doi.org/10.1006/anbe.1999.1147
Josens R, Eschbach C, Giurfa M (2009) Differential conditioning and long-term olfactory memory in individual Camponotus fellah ants. J Exp Biol 212:1904–1911. https://doi.org/10.1242/jeb.030080
Josens R, Farina WM, Roces F (1998) Nectar feeding by the ant Camponotus mus: intake rate and crop filling as a function of sucrose concentration. J Insect Physiol 44:579–585. https://doi.org/10.1016/S0022-1910(98)00053-5
Josens R, Mattiacci A, Lois-Milevicich J, Giacometti A (2016) Food information acquired socially overrides individual food assessment in ants. Behav Ecol Sociobiol 1–12. https://doi.org/10.1007/s00265-016-2216-x
Kardish MR, Mueller UG, Amador-Vargas S et al (2015) Blind trust in unblinded observation in ecology, evolution, and behavior. Front Ecol Evol. https://doi.org/10.3389/fevo.2015.00051
Kleineidam CJ, Ruchty M, Casero-Montes ZA, Roces F (2007) Thermal radiation as a learned orientation cue in leaf-cutting ants (Atta vollenweideri). J Insect Physiol 53:478–487. https://doi.org/10.1016/j.jinsphys.2007.01.011
Koywiwattrakul P, Thompson GJ, Sitthipraneed S, Oldroyd BP, Maleszka R (2005) Effects of carbon dioxide narcosis on ovary activation and gene expression in worker honeybees, Apis mellifera. J Insect Sci 5(1)
Ladevese B, Giurfa M, Josens R et al (2007) Conditionnement de Messor sanctus par la presence/absence d’un faible courant d’air. Union Internationle pour l’etude des insectes sociaux, Toulouse. http://uieis.univ-tours.fr/colloques/2007_UIEIS_Toulouse/2007_UIEIS_Toulouse_Resumes.pdf. Accessed 18 Jan 2018
Leadbeater E, Chittka L (2005) A new mode of information transfer in foraging bumblebees? Curr Biol 15:R447–R448
Lubbock J (1884) Ants, bees and wasps—the international scientific series, vol Xl. Kegan Paul, London, p 436
Macquart D, Latil G, Beugnon G (2008) Sensorimotor sequence learning in the ant Gigantiops destructor. Anim Behav 75:1693–1701. https://doi.org/10.1016/j.anbehav.2007.10.023
Menzel R (1968) Das Gedächtnis der Honigbiene für Spektralfarben. Z Für Vgl Physiol 60:82–102. https://doi.org/10.1007/BF00737097
Müller M, Wehner R (2007) Wind and sky as compass cues in desert ant navigation. Naturwissenschaften 94:589–594. https://doi.org/10.1007/s00114-007-0232-4
Nicolas G, Sillans D (1989) Immediate and latent effects of carbon dioxide on insects. Annu Rev Entomol 34:97–116. https://doi.org/10.1146/annurev.en.34.010189.000525
Oberhauser FB, Koch A, Czaczkes TJ (2018) Small differences in learning speed for different food qualities can drive efficient collective foraging in ant colonies. bioRxiv. https://doi.org/10.1101/274209
Paul J, Roces F (2003) Fluid intake rates in ants correlate with their feeding habits. J Insect Physiol 49:347–357. https://doi.org/10.1016/S0022-1910(03)00019-2
Pham-Delegue M-H, Trouiller J, Bakchine E et al (1991) Age dependency of worker bee response to queen pheromone in a four-armed olfactometer. Insect Soc 38:283–292. https://doi.org/10.1007/BF01314914
Poissonnier L-A, Jackson AL, Tanner CJ (2015) Cold and CO2 narcosis have long-lasting and dissimilar effects on Bombus terrestris. Insect Soc 62:291–298. https://doi.org/10.1007/s00040-015-0404-8
Popp S, Buckham-Bonnett P, Evison SEF et al (2017) No evidence for tactile communication of direction in foraging Lasius ants. Insectes Soc 1–10. https://doi.org/10.1007/s00040-017-0583-6
Provecho Y, Josens R (2009) Olfactory memory established during trophallaxis affects food search behaviour in ants. J Exp Biol 212:3221–3227. https://doi.org/10.1242/jeb.033506
Robinson EJH, Feinerman O, Franks NR (2012) Experience, corpulence and decision making in ant foraging. J Exp Biol 215:2653–2659. https://doi.org/10.1242/jeb.071076
Robinson EJH, Jackson DE, Holcombe M, Ratnieks FLW (2005) Insect communication: ‘No entry’ signal in ant foraging. Nature 438:442. https://doi.org/10.1038/438442a
Roces F (1993) Both evaluation of resource quality and speed of recruited leaf-cutting ants (Acromyrmex lundi) depend on their motivational state. Behav Ecol Sociobiol 33:183–189. https://doi.org/10.1007/BF00216599
Roces F (1990) Olfactory conditioning during the recruitment process in a leaf-cutting ant. Oecologia 83:261–262. https://doi.org/10.1007/BF00317762
Roces F (1994) Odour learning and decision-making during food collection in the leaf-cutting ant Acromyrmex lundi. Insect Soc 41:235–239. https://doi.org/10.1007/BF01242294
Roces F, Tautz J, Hölldobler B (1993) Stridulation in leaf-cutting ants: short-range recruitment through plant-borne vibrations. Naturwissenschaften 80:521–524
Saverschek N, Roces F (2011) Foraging leafcutter ants: olfactory memory underlies delayed avoidance of plants unsuitable for the symbiotic fungus. Anim Behav 82:453–458. https://doi.org/10.1016/j.anbehav.2011.05.015
Schatz B, Hossaert-McKey M (2010) Ants use odour cues to exploit fig–fig wasp interactions. Acta Oecol 36:107–113. https://doi.org/10.1016/j.actao.2009.10.008
Simon T, Hefetz A (1991) Trail-following responses of Tapinoma simrothi (Formicidae: Dolichoderinae) to pygidial gland extracts. Insect Soc 38:17–25. https://doi.org/10.1007/BF01242709
Sola FJ, Josens R (2016) Feeding behavior and social interactions of the Argentine ant Linepithema humile change with sucrose concentration. Bull Entomol Res 106:522–529. https://doi.org/10.1017/S0007485316000201
Stuart RJ (1986) Use of polyester fibers to mark small leptothoracine ants (Hymenoptera: Formicidae). J Kans Entomol Soc 59:566–568
Tully T, Quinn WG (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol A 157:263–277
van Oudenhove L, Billoir E, Boulay R et al (2011) Temperature limits trail following behaviour through pheromone decay in ants. Naturwissenschaften 98:1009–1017. https://doi.org/10.1007/s00114-011-0852-6
von Thienen W, Metzler D, Choe D-H, Witte V (2014) Pheromone communication in ants: a detailed analysis of concentration-dependent decisions in three species. Behav Ecol Sociobiol 68:1611–1627. https://doi.org/10.1007/s00265-014-1770-3
Vowles DM (1964) Olfactory learning and brain lesions in the wood ant (Formica rufa). J Comp Physiol Psychol 58:105–111. https://doi.org/10.1037/h0042609
Warren JM (1960) Reversal learning by paradise fish (Macropodus opercularis). J Comp Physiol Psychol 53:376–378
Wenk GL (2001) Assessment of spatial memory using the T maze. Curr Protoc Neurosci. https://doi.org/10.1002/0471142301.ns0805bs04
Wüst M, Menzel F (2017) I smell where you walked—how chemical cues influence movement decisions in ants. Oikos 126:149–160. https://doi.org/10.1111/oik.03332
Yilmaz A, Dyer AG, Rössler W, Spaethe J (2017) Innate colour preference, individual learning and memory retention in the ant Camponotus blandus. J Exp Biol 220:3315–3326. https://doi.org/10.1242/jeb.158501
Zuk M, Kolluru GR (1998) Exploitation of sexual signals by predators and parasitoids. Q Rev Biol 73:415–438. https://doi.org/10.1086/420412
Acknowledgements
Many thanks to Abel Bernadou, Florian Menzel, Roxanna Josens, Flavio Roces, and two anonymous referees for comments on previous versions of this manuscript, and to Joachim Ruther for discussing the appropriate methods for testing putative trail pheromones. TJC was supported by an Emmy Noether group leader Grant from the Feutsche Forschungsgemeinschaft, Grant number CZ 237/1-1.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Czaczkes, T.J. Using T- and Y-mazes in myrmecology and elsewhere: a practical guide. Insect. Soc. 65, 213–224 (2018). https://doi.org/10.1007/s00040-018-0621-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00040-018-0621-z
Keywords
- Y-maze
- T-maze
- Bifurcation
- Methods
- Experimental design