Advertisement

Insectes Sociaux

, Volume 65, Issue 2, pp 213–224 | Cite as

Using T- and Y-mazes in myrmecology and elsewhere: a practical guide

  • T. J. Czaczkes
Review Article

Abstract

T- and Y-mazes are powerful tools for studying the behavioural ecology and cognition of animals, especially ants. Such mazes are cheap, easy to deploy, and very flexible, allowing diverse subjects to be studied. These include cue and route learning, pheromone following, and testing for cognitive abilities such as associative and concept learning. However, while simple, the use of bifurcation mazes has many pitfalls, especially for ants which deposit pheromone trails. In this methods primer, I discuss the strengths and limitations of using bifurcation mazes to study ant behaviour, and outline some of the pitfalls to be avoided. I also provide a description of a suggested Y-maze design, and methodological details about using Y-mazes to study associative learning, route learning, and trail pheromone following. Although the description of the uses of bifurcation mazes, and their pitfalls, is not exhaustive, this methods primer hopes to be of use to both beginners and more experienced researchers in designing and deploying bifurcation mazes in their research. While primarily aimed at myrmecologists, much of the content of this methods primer will be broadly applicable to animal behavioural research.

Keywords

Y-maze T-maze Bifurcation Methods Experimental design 

Notes

Acknowledgements

Many thanks to Abel Bernadou, Florian Menzel, Roxanna Josens, Flavio Roces, and two anonymous referees for comments on previous versions of this manuscript, and to Joachim Ruther for discussing the appropriate methods for testing putative trail pheromones. TJC was supported by an Emmy Noether group leader Grant from the Feutsche Forschungsgemeinschaft, Grant number CZ 237/1-1.

References

  1. Aron S, Beckers R, Deneubourg J, Pasteels JM (1993) Memory and chemical communication the orientation of two mass-recruiting ant species. Insect Soc 40:369–380.  https://doi.org/10.1007/BF01253900 CrossRefGoogle Scholar
  2. Avarguès-Weber A, Chittka L (2014) Local enhancement or stimulus enhancement? Bumblebee social learning results in a specific pattern of flower preference. Anim Behav 97:185–191.  https://doi.org/10.1016/j.anbehav.2014.09.020 CrossRefGoogle Scholar
  3. Avarguès-Weber A, Sanchez MGB de, Giurfa M, Dyer AG (2010) Aversive reinforcement improves visual discrimination learning in free-flying honeybees. PLoS One 5:e15370.  https://doi.org/10.1371/journal.pone.0015370 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Becker G, Mannesmann R (1968) Untersuchungen über das Verhalten von Termiten gegenüber einigen spurbildenden Stoffen. J Appl Entomol 62:399–436Google Scholar
  5. Beckers R, Deneubourg JL, Goss S (1993) Modulation of trail laying in the ant Lasius niger (Hymenoptera: Formicidae) and its role in the collective selection of a food source. J Insect Behav 6:751–759.  https://doi.org/10.1007/BF01201674 CrossRefGoogle Scholar
  6. Bernadou A, Fourcassié V (2008) Does substrate coarseness matter for foraging ants? An experiment with Lasius niger (Hymenoptera; Formicidae). J Insect Physiol 54:534–542.  https://doi.org/10.1016/j.jinsphys.2007.12.001 CrossRefPubMedGoogle Scholar
  7. Bernadou A, Heinze J (2013) Mating-associated changes in the behaviour of Leptothorax gredleri ant queens. Ethology 119:634–643.  https://doi.org/10.1111/eth.12103 CrossRefGoogle Scholar
  8. Birch AJ, Chamberlain KB, Moore BP, Powell VH (1970) Termite attractants in Santalum spicatum. Aust J Chem 23:2337–2341.  https://doi.org/10.1071/ch9702337 CrossRefGoogle Scholar
  9. Casellas E, Gautrais J, Fournier R et al (2008) From individual to collective displacements in heterogeneous environments. J Theor Biol 250:424–434.  https://doi.org/10.1016/j.jtbi.2007.10.011 CrossRefPubMedGoogle Scholar
  10. Chen J, Henderson G, Laine RA (1998) Isolation and Identification of 2-phenoxyethanol from a ballpoint pen ink as a trail-following substance of Coptotermes formosanus Shiraki and Reticulitermes sp. J Entomol Sci 33:97–105.  https://doi.org/10.18474/0749-8004-33.1.97 CrossRefGoogle Scholar
  11. Cherrett JM (1972) Chemical aspects of plant attack by leaf-cutting ants. Phytochemical ecology. Academic Press, London, pp 13–24Google Scholar
  12. Choe D-H, Villafuerte DB, Tsutsui ND (2012) Trail pheromone of the argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae). PLoS One 7:e45016.  https://doi.org/10.1371/journal.pone.0045016 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Crawley M (2007) The R Book, 1st edn. Wiley, ChichesterCrossRefGoogle Scholar
  14. Czaczkes TJ, Beckwith JJ (2018) Information synergy: adding unambiguous quality information rescues social information use in ants. bioRxiv.  https://doi.org/10.1101/219980 Google Scholar
  15. Czaczkes TJ, Ratnieks FLW (2012) Pheromone trails in the Brazilian ant Pheidole oxyops: extreme properties and dual recruitment action. Behav Ecol Sociobiol 66:1149–1156.  https://doi.org/10.1007/s00265-012-1367-7 CrossRefGoogle Scholar
  16. Czaczkes TJ, Grüter C, Ratnieks FLW (2013) Ant foraging on complex trails: route learning and the role of trail pheromones in Lasius niger. J Exp Biol 216:188–197.  https://doi.org/10.1242/jeb.076570 CrossRefPubMedGoogle Scholar
  17. Czaczkes TJ, Schlosser L, Heinze J, Witte V (2014) Ants use directionless odour cues to recall odour-associated locations. Behav Ecol Sociobiol 68:981–988.  https://doi.org/10.1007/s00265-014-1710-2 CrossRefGoogle Scholar
  18. Czaczkes TJ, Czaczkes B, Iglhaut C, Heinze J (2015a) Composite collective decision-making. Proc R Soc B Biol Sci 282:20142723CrossRefGoogle Scholar
  19. Czaczkes TJ, Franz S, Witte V, Heinze J (2015b) Perception of collective path use affects path selection in ants. Anim Behav 99:15–24.  https://doi.org/10.1016/j.anbehav.2014.10.014 CrossRefGoogle Scholar
  20. Czaczkes TJ, Castorena M, Schürch R, Heinze J (2017) Pheromone trail following in the ant Lasius niger: high accuracy and variability but no effect of task state. Physiol Entomol 42:91–97.  https://doi.org/10.1111/phen.12174 CrossRefGoogle Scholar
  21. Czaczkes TJ, Brandstetter B, di Stefano I, Heinze J (2018a) Greater effort increases perceived value in an invertebrate. J Comp Psychol.  https://doi.org/10.1037/com0000109 PubMedGoogle Scholar
  22. Czaczkes TJ, Koch A, Fröber K, Dreisbach G (2018b) Voluntary switching in an invertebrate: the effect of cue and reward change. J Exp Psychol Anim Learn Cogn.  https://doi.org/10.1037/xan0000171 Google Scholar
  23. Darland T, Dowling JE (2001) Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad Sci 98:11691–11696.  https://doi.org/10.1073/pnas.191380698 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Deacon RMJ, Rawlins JNP (2006) T-maze alternation in the rodent. Nat Protoc 1:7–12.  https://doi.org/10.1038/nprot.2006.2 CrossRefPubMedGoogle Scholar
  25. Dember WN, Fowler H (1958) Spontaneous alternation behavior. Psychol Bull 55:412–428.  https://doi.org/10.1037/h0045446 CrossRefPubMedGoogle Scholar
  26. Detrain C, Deneubourg J-L, Pasteels JM (1999) Decision-making in foraging by social insects. Information processing in social insects. Springer, Berlin, pp 331–354CrossRefGoogle Scholar
  27. Devigne C, Detrain C (2002) Collective exploration and area marking in the ant Lasius niger. Insect Soc 49:357–362CrossRefGoogle Scholar
  28. Devigne C, Renon A, Detrain C (2004) Out of sight but not out of mind: modulation of recruitment according to home range marking in ants. Anim Behav 67:1023–1029.  https://doi.org/10.1016/j.anbehav.2003.09.012 CrossRefGoogle Scholar
  29. Dingle H (1962) The occurrence of correcting behavior in various insects. Ecology 43:727–728CrossRefGoogle Scholar
  30. Dupuy F, Sandoz J-C, Giurfa M, Josens R (2006) Individual olfactory learning in Camponotus ants. Anim Behav 72:1081–1091.  https://doi.org/10.1016/j.anbehav.2006.03.011 CrossRefGoogle Scholar
  31. Dussutour A, Deneubourg J-L, Fourcassié V (2005) Amplification of individual preferences in a social context: the case of wall-following in ants. Proc R Soc B Biol Sci 272:705–714.  https://doi.org/10.1098/rspb.2004.2990 CrossRefGoogle Scholar
  32. Edwards JP, Pinniger DB (1978) Evalutiaon of four isomers of 3-butyl-5-methloctahydroindoliz, a component of the trail pheromone of pharaoh’s ant, Monomorium pharaonis. Ann Appl Biol 89:395–399.  https://doi.org/10.1111/j.1744-7348.1978.tb05965.x CrossRefGoogle Scholar
  33. Falibene A, Josens R (2011) Sucrose acceptance threshold: a way to measure sugar perception in ants. Insect Soc.  https://doi.org/10.1007/s00040-011-0190-x Google Scholar
  34. Forster A, Czaczkes TJ, Warner E et al (2014) Effect of trail bifurcation asymmetry and pheromone presence or absence on trail choice by Lasius niger ants. Ethology 120:768–771.  https://doi.org/10.1111/eth.12248 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Fourcassie V, Beugnon G (1988) How do red wood ants orient when foraging in a three dimensional system? I. Laboratory experiments. Insect Soc 35:92–105.  https://doi.org/10.1007/BF02224141 CrossRefGoogle Scholar
  36. Fourcassié V, Deneubourg JL (1994) The dynamics of collective exploration and trail-formation in Monomorium pharaonis: experiments and model. Physiol Entomol 19:291–300.  https://doi.org/10.1111/j.1365-3032.1994.tb01055.x CrossRefGoogle Scholar
  37. Garnier S, Guérécheau A, Combe M et al (2009) Path selection and foraging efficiency in Argentine ant transport networks. Behav Ecol Sociobiol 63:1167–1179.  https://doi.org/10.1007/s00265-009-0741-6 CrossRefGoogle Scholar
  38. Gerbier G, Garnier S, Rieu C et al (2008) Are ants sensitive to the geometry of tunnel bifurcation? Anim Cogn 11:637–642.  https://doi.org/10.1007/s10071-008-0153-4 CrossRefPubMedGoogle Scholar
  39. Gissel Nielsen M (2001) Energetic cost of foraging in the ant Rhytidoponera aurata in tropical Australia. Physiol Entomol 26:248–253CrossRefGoogle Scholar
  40. Giurfa M, Hammer M, Stach S et al (1999) Pattern learning by honeybees: conditioning procedure and recognition strategy. Anim Behav 57:315–324.  https://doi.org/10.1006/anbe.1998.0957 CrossRefPubMedGoogle Scholar
  41. Giurfa M, Zhang S, Jenett A et al (2001) The concepts of ‘sameness’ and ‘difference’ in an insect. Nature 410:930–933.  https://doi.org/10.1038/35073582 CrossRefPubMedGoogle Scholar
  42. Graham P, Collett TS (2006) Bi-directional route learning in wood ants. J Exp Biol 209:3677–3684.  https://doi.org/10.1242/jeb.02414 CrossRefPubMedGoogle Scholar
  43. Graham P, Fauria K, Collett TS (2003) The influence of beacon-aiming on the routes of wood ants. J Exp Biol 206:535–541.  https://doi.org/10.1242/jeb.00115 CrossRefPubMedGoogle Scholar
  44. Greenwald E, Segre E, Feinerman O (2015) Ant trophallactic networks: simultaneous measurement of interaction patterns and food dissemination. Sci Rep.  https://doi.org/10.1038/srep12496 PubMedPubMedCentralGoogle Scholar
  45. Grüter C, Czaczkes TJ, Ratnieks FLW (2011) Decision making in ant foragers (Lasius niger) facing conflicting private and social information. Behav Ecol Sociobiol 64:141–148.  https://doi.org/10.1007/s00265-010-1020-2 CrossRefGoogle Scholar
  46. Guerrieri FJ, d’Ettorre P (2010) Associative learning in ants: conditioning of the maxilla–labium extension response in Camponotus aethiops. J Insect Physiol 56:88–92.  https://doi.org/10.1016/j.jinsphys.2009.09.007 CrossRefPubMedGoogle Scholar
  47. Guerrieri FJ, d’Ettorre P (2008) The mandible opening response: quantifying aggression elicited by chemical cues in ants. J Exp Biol 211:1109–1113.  https://doi.org/10.1242/jeb.008508 CrossRefPubMedGoogle Scholar
  48. Hagler JR, Jackson CG (2001) Methods for marking insects: current techniques and future prospects. Annu Rev Entomol 46:511–543CrossRefPubMedGoogle Scholar
  49. Hangartner W (1969) Orientierung von Lasius fuliginosus Latr. An Einer Gabelung der Geruchsspur. Insect Soc 16:55–60CrossRefGoogle Scholar
  50. Harrison JF, Fewell JH, Stiller TM, Breed MD (1989) Effects of experience on use of orientation cues in the giant tropical ant. Anim Behav 37:869–871.  https://doi.org/10.1016/0003-3472(89)90076-6 CrossRefGoogle Scholar
  51. Heinze J (1993) How to immobilize an ant. Insect Soc 40:231–232.  https://doi.org/10.1007/BF01240710 CrossRefGoogle Scholar
  52. Helanterä H, Walsh CJ, Ratnieks FLW (2011) Effect of foraging trail straightness on U-turning probability in forager Pharaoh’s ants. Sociobiology 57:445–449Google Scholar
  53. Hillery AE, Fell RD (2000) Chemistry and behavioral significance of rectal and accessory gland contents in Camponotus pennsylvanicus (Hymenoptera: Formicidae). Ann Entomol Soc Am 93:1294–1299CrossRefGoogle Scholar
  54. Hölldobler B, Braun U, Gronenberg W et al (1994) Trail communication in the ant Megaponera foetens (Fabr.) (Formicidae, Ponerinae). J Insect Physiol 40:585–593CrossRefGoogle Scholar
  55. Hölldobler B, Wilson EO (1977) Weaver ants: social establishment and maintenance of territory. Science 195:900–902.  https://doi.org/10.1126/science.841318 CrossRefPubMedGoogle Scholar
  56. Holman L, Head ML, Lanfear R, Jennions MD (2015) Evidence of experimental bias in the life sciences: why we need blind data recording. PLoS Biol 13:e1002190.  https://doi.org/10.1371/journal.pbio.1002190 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Hughes RN (1967) Turn alternation in woodlice (Porcellio scaber). Anim Behav 15:282–286.  https://doi.org/10.1016/0003-3472(67)90013-9 CrossRefPubMedGoogle Scholar
  58. Hunt ER, O’Shea-Wheller T, Albery GF et al (2014) Ants show a leftward turning bias when exploring unknown nest sites. Biol Lett 10:20140945.  https://doi.org/10.1098/rsbl.2014.0945 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Jackson DE, Holcombe M, Ratnieks FLW (2004) Trail geometry gives polarity to ant foraging networks. Nature 432:907–909.  https://doi.org/10.1038/nature03105 CrossRefPubMedGoogle Scholar
  60. Jackson DE, Martin SJ, Holcombe M, Ratnieks FLW (2006) Longevity and detection of persistent foraging trails in Pharaoh’s ants, Monomorium pharaonis (L.). Anim Behav 71:351–359.  https://doi.org/10.1016/j.anbehav.2005.04.018 CrossRefGoogle Scholar
  61. Jander R (1990) Arboreal search in ants: search on branches (Hymenoptera: Formicidae). J Insect Behav 3:515–527.  https://doi.org/10.1007/BF01052015 CrossRefGoogle Scholar
  62. Jeanson R, Ratnieks FLW, Deneubourg JL (2003) Pheromone trail decay rates on different substrates in the Pharaoh’s ant, Monomorium pharaonis. Physiol Entomol 28:192–198.  https://doi.org/10.1046/j.1365-3032.2003.00332.x CrossRefGoogle Scholar
  63. Jones RB, Marin RH, Garcia DA, Arce A (1999) T-maze behaviour in domestic chicks: a search for underlying variables. Anim Behav 58:211–217.  https://doi.org/10.1006/anbe.1999.1147 CrossRefPubMedGoogle Scholar
  64. Josens R, Eschbach C, Giurfa M (2009) Differential conditioning and long-term olfactory memory in individual Camponotus fellah ants. J Exp Biol 212:1904–1911.  https://doi.org/10.1242/jeb.030080 CrossRefPubMedGoogle Scholar
  65. Josens R, Farina WM, Roces F (1998) Nectar feeding by the ant Camponotus mus: intake rate and crop filling as a function of sucrose concentration. J Insect Physiol 44:579–585.  https://doi.org/10.1016/S0022-1910(98)00053-5 CrossRefPubMedGoogle Scholar
  66. Josens R, Mattiacci A, Lois-Milevicich J, Giacometti A (2016) Food information acquired socially overrides individual food assessment in ants. Behav Ecol Sociobiol 1–12.  https://doi.org/10.1007/s00265-016-2216-x
  67. Kardish MR, Mueller UG, Amador-Vargas S et al (2015) Blind trust in unblinded observation in ecology, evolution, and behavior. Front Ecol Evol.  https://doi.org/10.3389/fevo.2015.00051 Google Scholar
  68. Kleineidam CJ, Ruchty M, Casero-Montes ZA, Roces F (2007) Thermal radiation as a learned orientation cue in leaf-cutting ants (Atta vollenweideri). J Insect Physiol 53:478–487.  https://doi.org/10.1016/j.jinsphys.2007.01.011 CrossRefPubMedGoogle Scholar
  69. Koywiwattrakul P, Thompson GJ, Sitthipraneed S, Oldroyd BP, Maleszka R (2005) Effects of carbon dioxide narcosis on ovary activation and gene expression in worker honeybees, Apis mellifera. J Insect Sci 5(1)Google Scholar
  70. Ladevese B, Giurfa M, Josens R et al (2007) Conditionnement de Messor sanctus par la presence/absence d’un faible courant d’air. Union Internationle pour l’etude des insectes sociaux, Toulouse. http://uieis.univ-tours.fr/colloques/2007_UIEIS_Toulouse/2007_UIEIS_Toulouse_Resumes.pdf. Accessed 18 Jan 2018
  71. Leadbeater E, Chittka L (2005) A new mode of information transfer in foraging bumblebees? Curr Biol 15:R447–R448CrossRefPubMedGoogle Scholar
  72. Lubbock J (1884) Ants, bees and wasps—the international scientific series, vol Xl. Kegan Paul, London, p 436Google Scholar
  73. Macquart D, Latil G, Beugnon G (2008) Sensorimotor sequence learning in the ant Gigantiops destructor. Anim Behav 75:1693–1701.  https://doi.org/10.1016/j.anbehav.2007.10.023 CrossRefGoogle Scholar
  74. Menzel R (1968) Das Gedächtnis der Honigbiene für Spektralfarben. Z Für Vgl Physiol 60:82–102.  https://doi.org/10.1007/BF00737097 CrossRefGoogle Scholar
  75. Müller M, Wehner R (2007) Wind and sky as compass cues in desert ant navigation. Naturwissenschaften 94:589–594.  https://doi.org/10.1007/s00114-007-0232-4 CrossRefPubMedGoogle Scholar
  76. Nicolas G, Sillans D (1989) Immediate and latent effects of carbon dioxide on insects. Annu Rev Entomol 34:97–116.  https://doi.org/10.1146/annurev.en.34.010189.000525 CrossRefGoogle Scholar
  77. Oberhauser FB, Koch A, Czaczkes TJ (2018) Small differences in learning speed for different food qualities can drive efficient collective foraging in ant colonies. bioRxiv.  https://doi.org/10.1101/274209 Google Scholar
  78. Paul J, Roces F (2003) Fluid intake rates in ants correlate with their feeding habits. J Insect Physiol 49:347–357.  https://doi.org/10.1016/S0022-1910(03)00019-2 CrossRefPubMedGoogle Scholar
  79. Pham-Delegue M-H, Trouiller J, Bakchine E et al (1991) Age dependency of worker bee response to queen pheromone in a four-armed olfactometer. Insect Soc 38:283–292.  https://doi.org/10.1007/BF01314914 CrossRefGoogle Scholar
  80. Poissonnier L-A, Jackson AL, Tanner CJ (2015) Cold and CO2 narcosis have long-lasting and dissimilar effects on Bombus terrestris. Insect Soc 62:291–298.  https://doi.org/10.1007/s00040-015-0404-8 CrossRefGoogle Scholar
  81. Popp S, Buckham-Bonnett P, Evison SEF et al (2017) No evidence for tactile communication of direction in foraging Lasius ants. Insectes Soc 1–10.  https://doi.org/10.1007/s00040-017-0583-6
  82. Provecho Y, Josens R (2009) Olfactory memory established during trophallaxis affects food search behaviour in ants. J Exp Biol 212:3221–3227.  https://doi.org/10.1242/jeb.033506 CrossRefPubMedGoogle Scholar
  83. Robinson EJH, Feinerman O, Franks NR (2012) Experience, corpulence and decision making in ant foraging. J Exp Biol 215:2653–2659.  https://doi.org/10.1242/jeb.071076 CrossRefPubMedGoogle Scholar
  84. Robinson EJH, Jackson DE, Holcombe M, Ratnieks FLW (2005) Insect communication: ‘No entry’ signal in ant foraging. Nature 438:442.  https://doi.org/10.1038/438442a CrossRefPubMedGoogle Scholar
  85. Roces F (1993) Both evaluation of resource quality and speed of recruited leaf-cutting ants (Acromyrmex lundi) depend on their motivational state. Behav Ecol Sociobiol 33:183–189.  https://doi.org/10.1007/BF00216599 CrossRefGoogle Scholar
  86. Roces F (1990) Olfactory conditioning during the recruitment process in a leaf-cutting ant. Oecologia 83:261–262.  https://doi.org/10.1007/BF00317762 CrossRefPubMedGoogle Scholar
  87. Roces F (1994) Odour learning and decision-making during food collection in the leaf-cutting ant Acromyrmex lundi. Insect Soc 41:235–239.  https://doi.org/10.1007/BF01242294 CrossRefGoogle Scholar
  88. Roces F, Tautz J, Hölldobler B (1993) Stridulation in leaf-cutting ants: short-range recruitment through plant-borne vibrations. Naturwissenschaften 80:521–524CrossRefGoogle Scholar
  89. Saverschek N, Roces F (2011) Foraging leafcutter ants: olfactory memory underlies delayed avoidance of plants unsuitable for the symbiotic fungus. Anim Behav 82:453–458.  https://doi.org/10.1016/j.anbehav.2011.05.015 CrossRefGoogle Scholar
  90. Schatz B, Hossaert-McKey M (2010) Ants use odour cues to exploit fig–fig wasp interactions. Acta Oecol 36:107–113.  https://doi.org/10.1016/j.actao.2009.10.008 CrossRefGoogle Scholar
  91. Simon T, Hefetz A (1991) Trail-following responses of Tapinoma simrothi (Formicidae: Dolichoderinae) to pygidial gland extracts. Insect Soc 38:17–25.  https://doi.org/10.1007/BF01242709 CrossRefGoogle Scholar
  92. Sola FJ, Josens R (2016) Feeding behavior and social interactions of the Argentine ant Linepithema humile change with sucrose concentration. Bull Entomol Res 106:522–529.  https://doi.org/10.1017/S0007485316000201 CrossRefPubMedGoogle Scholar
  93. Stuart RJ (1986) Use of polyester fibers to mark small leptothoracine ants (Hymenoptera: Formicidae). J Kans Entomol Soc 59:566–568Google Scholar
  94. Tully T, Quinn WG (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol A 157:263–277CrossRefPubMedGoogle Scholar
  95. van Oudenhove L, Billoir E, Boulay R et al (2011) Temperature limits trail following behaviour through pheromone decay in ants. Naturwissenschaften 98:1009–1017.  https://doi.org/10.1007/s00114-011-0852-6 CrossRefPubMedGoogle Scholar
  96. von Thienen W, Metzler D, Choe D-H, Witte V (2014) Pheromone communication in ants: a detailed analysis of concentration-dependent decisions in three species. Behav Ecol Sociobiol 68:1611–1627.  https://doi.org/10.1007/s00265-014-1770-3 CrossRefGoogle Scholar
  97. Vowles DM (1964) Olfactory learning and brain lesions in the wood ant (Formica rufa). J Comp Physiol Psychol 58:105–111.  https://doi.org/10.1037/h0042609 CrossRefPubMedGoogle Scholar
  98. Warren JM (1960) Reversal learning by paradise fish (Macropodus opercularis). J Comp Physiol Psychol 53:376–378CrossRefPubMedGoogle Scholar
  99. Wenk GL (2001) Assessment of spatial memory using the T maze. Curr Protoc Neurosci.  https://doi.org/10.1002/0471142301.ns0805bs04 PubMedGoogle Scholar
  100. Wüst M, Menzel F (2017) I smell where you walked—how chemical cues influence movement decisions in ants. Oikos 126:149–160.  https://doi.org/10.1111/oik.03332 CrossRefGoogle Scholar
  101. Yilmaz A, Dyer AG, Rössler W, Spaethe J (2017) Innate colour preference, individual learning and memory retention in the ant Camponotus blandus. J Exp Biol 220:3315–3326.  https://doi.org/10.1242/jeb.158501 CrossRefPubMedGoogle Scholar
  102. Zuk M, Kolluru GR (1998) Exploitation of sexual signals by predators and parasitoids. Q Rev Biol 73:415–438.  https://doi.org/10.1086/420412 CrossRefGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2018

Authors and Affiliations

  1. 1.Animal Comparative Economics Laboratory, Institute of ZoologyUniversity of RegensburgRegensburgGermany

Personalised recommendations