Insectes Sociaux

, Volume 65, Issue 1, pp 47–57 | Cite as

Morphological characteristics reflect food sources and degree of host ant specificity in four Myrmecophilus crickets

  • T. KomatsuEmail author
  • M. Maruyama
  • M. Hattori
  • T. Itino
Research Article


Myrmecophilus crickets are well-known inquilines that live and obtain food resources in ant nests. In Japanese Myrmecophilus species various degrees of host specificity are reflected in behavioral differences among species. For example, extremely specialized species perform trophallaxis with their host ant species, whereas generalist species may steal food from their hosts without any intimate contact. We examined behavioral variations among four Myrmecophilus species that use different hosts and show different degrees of specificity, and we also compared morphological traits such as mandible shape and hind leg length among the species. The morphometric analyses showed that an extreme host-specialist species had less complex and largely non-functional mandibles, reflecting its dependence on trophallaxis with its host ant species. In contrast, extreme host-generalist and/or moderate specialist species, which directly eat solid foods, had more complex and functional mandibles which they use to cut and crush their foods, such as insect carcasses and ant larvae. The extreme host-specialist species had shorter hind legs than the extreme host-generalist. This may reflect that it suffers few attacks from the host ants. Our results show that in Myrmecophilus food sources shape behavioral interactions with host ant species and correlate with morphological characteristics.


Food habit Interaction Myrmecophily Orthoptera Specialization 



We thank S. Inada, F. Ito, M. Sugimoto, and Y. Tsuneoka for providing samples. This work was supported by Japan Society for the Promotion of Science KAKENHI Grant number 14J00931 to T.K.


  1. Akino T, Mochizuki R, Morimoto M, Yamaoka R (1996) Chemical camouflage of myrmecophilous cricket Myrmecophilus sp. to be integrated with several ant species. Jpn J Appl Entomol Zool 40:39–46CrossRefGoogle Scholar
  2. Als TD, Vila R, Kandul NP, Nash DR, Yen SH, Mignault AA, Boomsma JJ, Pierce NE (2004) The evolution of alternative parasitic life histories in large blue butterflies. Nature 432:386–390CrossRefPubMedGoogle Scholar
  3. Baccetti B (1967) Notulae orthopterologicae XXII. II Genere Myrmecophilus Berth. in Italia. Redia 50:1–33Google Scholar
  4. Bennet-Clark HC (1990) Jumping in orthoptera. In: Chapman RF, Joern A (eds) Biology of grasshoppers. Wiley-Interscience, New York, pp 173–203Google Scholar
  5. Bernard F (1968) Les fourmis (Hymenoptera Formicidae) d`Europe occidentale et septentrionale. Faune d’Europe et du Bassin Méditerranéen 3. Masson, ParisGoogle Scholar
  6. Blanckenhorn WU, Kraushaar URS, Teuschl Y, Reim C (2004) Sexual selection on morphological and physiological traits and fluctuating asymmetry in the black scavenger fly Sepsis cynipsea. J Evol Biol 17:629–641CrossRefPubMedGoogle Scholar
  7. Brues CT (1939) Food, drink, and evolution. Science 90:145–149CrossRefPubMedGoogle Scholar
  8. Burrows M, Picker MD (2010) Jumping mechanisms and performance of pygmy mole crickets (Orthoptera, Tridactylidae). J Exp Biol 213:2386–2398CrossRefPubMedGoogle Scholar
  9. Chapman RF (1964) The structure and wear of the mandibles in some African grasshoppers. J Zool 142:107–122Google Scholar
  10. Chapman RF (1995) Mechanics of food handing by chewing insects. In: Chapman RF, Gerrit de B (eds) Regulatory mechanisms in insect feeding. Springer, Berlin, pp 3–31CrossRefGoogle Scholar
  11. De Boer G (1995) Introduction. In: Chapman RF, Gerrit de B (eds) Regulatory mechanisms in insect feeding. Springer, Berlin, p 19Google Scholar
  12. Donovan SE, Jones DT, Sands WA, Eggleton P (2000) Morphological phylogenetics of termites (Isoptera). Biol J Linn Soc 70:467–513CrossRefGoogle Scholar
  13. El Ela SA, El Sayed W, Nakamura K (2010) Mandibular structure, gut contents analysis and feeding group of orthopteran species collected from different habitats of Satoyama area within Kanazawa City, Japan. J Threat Taxa 2:849–857CrossRefGoogle Scholar
  14. Fiedler K (1990) Effects of larval diet on myrmecophilous qualities of Polyommatus icarus caterpillars (Lepidoptera: Lycaenidae). Oecologia 83:284–287CrossRefPubMedGoogle Scholar
  15. Fiedler K (2006) Ant-associates of Palaearctic lycaenid butterfly larvae (Hymenoptera: Formicidae; Lepidoptera: Lycaenidae): a review. Myrmecol Nachricht 9:77–87Google Scholar
  16. Gangwere SK (1965) Food selection in the Oediponidae grasshopper Arphia sulphurea. Am Midl Nat 74:67–75CrossRefGoogle Scholar
  17. Gangwere SK, Spiller DO (1995) Food selection and feeding behavior in selected Orthoptera sen. lat. of the Balearic Islands, Spain. J Orthopt Res 4:147–160CrossRefGoogle Scholar
  18. Gapud VP (1968) The external morphology of the head and mouthparts of some Philippine Orthoptera. Philippine Entomol 1:11–32Google Scholar
  19. Gilchrist AS, Partridge L (2001) The contrasting genetic architecture of wing size and shape in Drosophila melanogaster. Heredity 86:144–152CrossRefPubMedGoogle Scholar
  20. Henderson G, Akre RD (1986) Biology of the myrmecophilous cricket, Myrmecophila manni., (Orthoptera: Gryllidae). J Kans Entomol Soc 59:454–467Google Scholar
  21. Hölldobler B (1985) Liquid food transmission and antennation signals in ponerine ants. Isr J Entomol 19:89–99Google Scholar
  22. Hölldobler K (1947) Studien über die Ameisengrille (Myrmecophila acervorum Panzer) im mittleren Maingebiet. Mitt Schweiz Ent Ges 20:607–648Google Scholar
  23. Ingrisch S (1995) Eine neue Ameisengrille aus Borneo (Ensifera: Grylloidea). Entomol Z 105:421–440Google Scholar
  24. Isley FB (1944) Correlation between mandibular morphology and food specificity in grasshoppers. Ann Entomol Soc Am 37:47–67CrossRefGoogle Scholar
  25. Javier R, Xim C (1994) Agonistic relationships among sympatric Mediterranean ant species (Hymenoptera: Formicidae). J Insect Behav 8:365–380CrossRefGoogle Scholar
  26. Judge KA, Bonanno VL (2008) Male weaponry in a fighting cricket. Plos One 3:e3980. doi: 10.1371/journal.pone.0003980 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kang L, Gan Y, Li SL (1999) The structural adaptation of mandibles and food specificity in grasshoppers on Inner Mongolian grasslands. J Orthopt Res 8:257–269CrossRefGoogle Scholar
  28. Kaufmann T (1965) Biological studies on some Bavarian Acridoidea (Orthoptera), with special reference to their feeding habits. Ann Entomol Soc Am 58:791–801CrossRefGoogle Scholar
  29. Kistner DH (1979) Social and evolutionary significance of social insects symbionts. In: Hermann HR (ed) Social insects, vol I. Academic Press, New York, pp 339–413Google Scholar
  30. Kistner DH (1982) The social insects’ bestiary. In: Hermann HR (ed) Social insects, vol III. Academic Press, New York, pp 1–244Google Scholar
  31. Komatsu T (2013) Myrmecophilus kubotai Maruyama 2004. In: Maruyama M, Komatsu T, Kudo S, Shimada T, Kinomura K (eds) The guests of Japanese ants. Tokai University Press, Kanagawa, p. 208Google Scholar
  32. Komatsu T (2014) Discoveries in field work no.14. Strange-man of the mountain behind; naturalist wondering in the field. Tokai University Press, Kanagawa, p. 276Google Scholar
  33. Komatsu T, Maruyama M, Ueda S, Itino T (2008) mtDNA phylogeny of Japanese ant crickets (Orthoptera: Myrmecophilidae): diversification in host specificity and habitat use. Sociobiology 52:553–565Google Scholar
  34. Komatsu T, Maruyama M, Itino T (2009) Behavioral difference between two ant cricket species in Nansei Islands: host-specialist versus host-generalist. Insect Soc 56:389–396CrossRefGoogle Scholar
  35. Komatsu T, Maruyama M, Itino T (2010) Difference in host specificity and behavior of two ant cricket species (Orthoptera: Myrmecophilidae) in Honshu, Japan. J Entomol Sci 45:227–238CrossRefGoogle Scholar
  36. Komatsu T, Maruyama M, Itino T (2013) Nonintegrated host association of Myrmecophilus tetramorii, a specialist myrmecophilous ant cricket. Psyche 2013:568536. doi: 10.1155/2013/568536 Google Scholar
  37. Konuma J, Nagata N, Sota T (2011) Factors determining the direction of ecological specialization in snail-feeding carabid beetles. Evol Int J org Evol 65:408–418CrossRefGoogle Scholar
  38. Koshikawa S, Matsumoto T, Miura T (2002) Morphometric changes during soldier differentiation of the damp-wood termite Hodotermopsis japonica (Isoptera, Termopsidae). Insect Soc 49:245–250CrossRefGoogle Scholar
  39. Kozarzhevskaya E (1986) Scale insects (Homoptera, Coccoidea) of ornamental plants in the European part of the USSR and some neighboring countries. Entomol Rev 64:144–158Google Scholar
  40. Krenn HW (2010) Feeding mechanisms of adult Lepidoptera: structure, function, and evolution of the mouthparts. Annu Rev Entomol 55:307–327CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lach L (2003) Invasive ants: unwanted partners in ant-plant interactions? Ann Mo Bot Gard 90:91–108CrossRefGoogle Scholar
  42. Liebermann J (1968) The mandibles of grasshoppers of the subfamily Chilacridinae. Rev Invest Agropecu 5:53–62 (Spanish) Google Scholar
  43. Maruyama M (2004) Four new species of Myrmecophilus (Orthoptera. Myrmecophilidae) from Japan. Bull Nat Sci Mus 30:37–44Google Scholar
  44. Maruyama M (2006) Family Myrmecophilidae Saussure, 1870. In: Orthopterological Society of Japan (ed) Orthoptera of the Japanese archipelago in color, Hokkaido University Press, Sapporo, p. 687Google Scholar
  45. McCollum SA, Leimberger JD (1997) Predator-induced morphological changes in an amphibian: predation by dragonflies affects tadpole shape and color. Oecologia 109:615–621CrossRefPubMedGoogle Scholar
  46. Mulkern GB (1967) Food selection by grasshoppers. Annu Rev Entomol 12:59–78CrossRefGoogle Scholar
  47. Neoh KB, Lee CY (2009) Developmental stages and castes of two sympatric subterranean termites Macrotermes gilvus and Macrotermes carbonarius (Blattodea: Termitidae). Ann Entomol Soc Am 102:1091–1098CrossRefGoogle Scholar
  48. Okada Y, Plateaux L, Peeters C (2013) Morphological variability of intercastes in the ant Temnothorax nylanderi: pattern of trait expression and modularity. Insect Soc 60:319–328CrossRefGoogle Scholar
  49. Pakkasmaa S, Merilä J, O’Hara RB (2003) Genetic and maternal effect influences on viability of common frog tadpoles under different environmental conditions. Heredity 91:117–124CrossRefPubMedGoogle Scholar
  50. Patterson BD (1984) Correlation between mandibular morphology and specific diet of some desert grassland Acrididae (Orthoptera). Am Midl Nat 111:296–303CrossRefGoogle Scholar
  51. Pierce NE (1995) Predatory and parasitic Lepidoptera: carnivores living on plants. J Lepidopterists’ Soc 49:412–453Google Scholar
  52. Reimer N, Beardsley JW, Jahn G (1990) Pest ants in the Hawaiian Islands. In: Vander Meer RK, Jaffe K, Cedeno A (eds) Applied myrmecology: a world host specificity and behavior of two ant crickets perspective. Westview Press, Boulder, pp 40–50Google Scholar
  53. Sakai H, Terayama M (1995) Host records and some ecological information of the ant cricket Myrmecophilus sapporensis Matsumura. Ari 19:2–5 (Japanese) Google Scholar
  54. Santer RD, Yamawaki Y, Rind FC, Simmons PJ (2008) Preparing for escape: an examination of the role of the DCMD neuron in locust escape jumps. J Comp Physiol A 194:69–77CrossRefGoogle Scholar
  55. Savi P (1819) Osservazioni sopra la Blatta acervorum di Panzer. Gryllus myrmecophilus. Bibl Ital 25:217–229Google Scholar
  56. Schimmer F (1909) Beitrag zu einer Monographie der Gryllodeengattung Myrmecophila Latr. Ztschr Zool 93:409–534Google Scholar
  57. Sutton GP, Burrows M (2008) The mechanics of elevation control in locust jumping. J Comp Physiol A 194:557–563CrossRefGoogle Scholar
  58. Tsuchiya M, Watanabe D, Maekawa K (2008) Effect on mandibular length of juvenile hormones and regulation of soldier differentiation in the termite Reticutiterme ssperatus (Isoptera: Rhinotermitidae). Appl Entomol Zool 43:307–314CrossRefGoogle Scholar
  59. Veenakumari K, Mohanrai P, Sreekumar PV (1997) Host plant utilization by butterfly larvae in the Andaman and Nicobar Islands (Indian Ocean). J Insect Conserv 1:235–246CrossRefGoogle Scholar
  60. Wheeler WM (1900) The habits of Myrmecophila nebrascensis Bruner. Psyche 9:111–115CrossRefGoogle Scholar
  61. Wheeler WM (1910) Ants: their structure, development, and behavior. Columbia University Press, New YorkGoogle Scholar
  62. Wheeler WM (1928) The social insects: their origin and evolution. Kegan Paul, Trench, Trubner and Co., Ltd, LondonCrossRefGoogle Scholar
  63. Windig JJ, Rintamäki PT, Cassel A, Nylin S (2000) How useful is fluctuating asymmetry in conservation biology: asymmetry in rare and abundant Coenonympha butterflies. J Insect Conservn 4:253–261CrossRefGoogle Scholar
  64. Yamaguchi S (1988) The life history of five myrmecophilous lycaenid butterflies of Japan. Kodansha, Tokyo (Japanese) Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2017

Authors and Affiliations

  • T. Komatsu
    • 1
    Email author
  • M. Maruyama
    • 2
  • M. Hattori
    • 3
  • T. Itino
    • 4
    • 5
  1. 1.Institute of Tropical AgricultureKyushu UniversityFukuokaJapan
  2. 2.The Kyushu University MuseumFukuokaJapan
  3. 3.Graduate school of Fisheries and Environmental ScienceNagasaki UniversityNagasakiJapan
  4. 4.Department of Biology, Faculty of ScienceShinshu UniversityMatsumotoJapan
  5. 5.Institute of Mountain ScienceShinshu UniversityMatsumotoJapan

Personalised recommendations