No evidence for tactile communication of direction in foraging Lasius ants

Research Article

Abstract

The idea that ants communicate when meeting on a trail is beguiling, but evidence for this is scarce. Physical communication in ants has been demonstrated to play a role as a modulator of behaviours such as alarm and recruitment. Honeybees can communicate the location of a resource using an advanced motor display—the waggle dance. However, no equivalent of the waggle dance has been described for any ant species, and it is widely believed that ants cannot communicate the location of resources using motor displays. One group of researchers report several demonstrations of such communication in Formica ants; however, these results have been largely ignored. More recently some evidence arose that Lasius niger foragers returning from a food source can communicate to outgoing foragers the direction that should be taken at the next bifurcation by means of physical contact on the trail. Here, we make a concerted effort to replicate these results. Although initial results seemed to indicate physical communication, once stringent controls to eliminate pheromone cues were put in place, no evidence for physical communication of food location could be found. This null result was replicated independently by a different research group on a closely related species, L. neglectus. We conclude that neither L. niger nor L. neglectus foragers communicate resource location using physical contact. Our results increase the burden of proof required for other claims of physical communication of direction in ants, but do not completely rule out this possibility.

Keywords

Motor displays Tactile communication Distance homing Lasius niger Lasius neglectus Antennation 

Supplementary material

40_2017_583_MOESM1_ESM.docx (401 kb)
Supplementary material 1 (DOCX 400 kb)
40_2017_583_MOESM2_ESM.xlsx (163 kb)
Supplementary material 2 (XLSX 163 kb)

References

  1. Akino T, Yamamura K, Wakamura S, Yamaoka R (2004) Direct behavioral evidence for hydrocarbons as nestmate recognition cues in Formica japonica (Hymenoptera: Formicidae). Appl Entomol Zool 39:381–387CrossRefGoogle Scholar
  2. Aron S, Beckers R, Deneubourg J, Pasteels JM (1993) Memory and chemical communication the orientation of two mass-recruiting ant species. Insectes Soc 40:369–380. doi:10.1007/BF01253900 CrossRefGoogle Scholar
  3. Balbuena MS, Molinas J, Farina WM (2012) Honeybee recruitment to scented food sources: correlations between in-hive social interactions and foraging decisions. Behav Ecol Sociobiol 66:445–452. doi:10.1007/s00265-011-1290-3 CrossRefGoogle Scholar
  4. Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1(7):1–23Google Scholar
  5. Beckers R, Deneubourg JL, Goss S, Pasteels JM (1990) Collective decision making through food recruitment. Insectes Soc 37:258–267CrossRefGoogle Scholar
  6. Beckers R, Deneubourg JL, Goss S (1993) Modulation of trail laying in the ant Lasius niger (Hymenoptera: Formicidae) and its role in the collective selection of a food source. J Insect Behav 6:751–759. doi:10.1007/BF01201674 CrossRefGoogle Scholar
  7. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple resting. J R Stat Soc Ser B Methodol 57:289–300Google Scholar
  8. Bhatkar A, Whitcomb WH (1970) Artificial diet for rearing various species of ants. Fla Entomol 53:229–232CrossRefGoogle Scholar
  9. Bonavita-Cougourdan A, Morel L (1984) Les activités antennaires au cours des contacts trophallactiques chez la fourmi Camponotus vagus Scop. Ont-elles valeur de signal? Insectes Soc 31:113–131. doi:10.1007/BF02232709 CrossRefGoogle Scholar
  10. Collett M, Chittka L, Collett TS (2013) Spatial memory in insect navigation. Curr Biol 23:R789–R800. doi:10.1016/j.cub.2013.07.020 CrossRefPubMedGoogle Scholar
  11. Core Team R (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  12. Czaczkes TJ, Heinze J (2015) Ants respond to a changing environment and making errors by adjusting pheromone deposition. Proc R Soc B Biol Sci. doi:10.1098/rspb.2015.0679 Google Scholar
  13. Czaczkes TJ, Schlosser L, Heinze J, Witte V (2014) Ants use directionless odour cues to recall odour-associated locations. Behav Ecol Sociobiol 68:981–988. doi:10.1007/s00265-014-1710-2 CrossRefGoogle Scholar
  14. Czaczkes TJ, Czaczkes B, Iglhaut C, Heinze J (2015a) Composite collective decision-making. Proc Biol Sci 282(1809):20142723CrossRefPubMedPubMedCentralGoogle Scholar
  15. Czaczkes TJ, Grüter C, Ratnieks FLW (2015b) Trail pheromones: an integrative view of their role in colony organisation. Annu Rev Entomol 60:581–599. doi:10.1146/annurev-ento-010814-020627 CrossRefPubMedGoogle Scholar
  16. Czaczkes TJ, Salmane AK, Heinze J, Klampfleuthner FAM (2016) Private information alone can cause trapping of ant colonies in local feeding optima. J Exp Biol 219:744–751. doi:10.1242/jeb.131847 CrossRefPubMedGoogle Scholar
  17. Czaczkes TJ, Castorena M, Schürch R, Heinze J (2017) Pheromone trail following in the ant Lasius niger: high accuracy and variability but no effect of task state. Physiol Entomol 44(1):91–97. doi:10.1111/phen.12174 CrossRefGoogle Scholar
  18. Dacke M, Srinivasan MV (2008) Evidence for counting in insects. Anim Cogn 11:683–689. doi:10.1007/s10071-008-0159-y CrossRefPubMedGoogle Scholar
  19. Devigne C, Detrain C (2006) How does food distance influence foraging in the ant Lasius niger: the importance of home-range marking. Insectes Soc 53:46–55. doi:10.1007/s00040-005-0834-9 CrossRefGoogle Scholar
  20. Evison SEF (2008) Foraging organisation in ants. PhD Thesis, University of Sheffield. Available online at http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500109
  21. Evison SEF, Petchey OL, Beckerman AP, Ratnieks FLW (2008) Combined use of pheromone trails and visual landmarks by the common garden ant Lasius niger. Behav Ecol Sociobiol 63:261–267. doi:10.1007/s00265-008-0657-6 CrossRefGoogle Scholar
  22. Farina WM, Grüter C, Díaz PC (2005) Social learning of floral odours inside the honeybee hive. Proc R Soc B Biol Sci 272:1923–1928. doi:10.1098/rspb.2005.3172 CrossRefGoogle Scholar
  23. Forstmeier W, Schielzeth H (2011) Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner’s curse. Behav Ecol Sociobiol 65:47–55. doi:10.1007/s00265-010-1038-5 CrossRefPubMedGoogle Scholar
  24. Goss S, Aron S, Deneubourg JL, Pasteels JM (1989) Self-organized shortcuts in the Argentine ant. Naturwissenschaften 76:579–581. doi:10.1007/BF00462870 CrossRefGoogle Scholar
  25. Grüter C, Balbuena MS, Farina WM (2008) Informational conflicts created by the waggle dance. Proc R Soc B Biol Sci 275:1321–1327. doi:10.1098/rspb.2008.0186 CrossRefGoogle Scholar
  26. Grüter C, Czaczkes TJ, Ratnieks FLW (2011) Decision making in ant foragers (Lasius niger) facing conflicting private and social information. Behav Ecol Sociobiol 64:141–148. doi:10.1007/s00265-010-1020-2 CrossRefGoogle Scholar
  27. Hölldobler B (1971) Recruitment behavior in Camponotus socius (Hym. Formicidae). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 75:123–142. doi:10.1007/BF00335259 Google Scholar
  28. Hölldobler B (1976) Recruitment behavior, home range orientation and territoriality in harvester ants, Pogonomyrmex. Behav Ecol Sociobiol 1:3–44. doi:10.1007/BF00299951 CrossRefGoogle Scholar
  29. Hölldobler B, Wilson EO (1978) The multiple recruitment systems of the african weaver ant Oecophylla longinoda (Latreille) (Hymenoptera: Formicidae). Behav Ecol Sociobiol 3:19–60. doi:10.1007/BF00300045 CrossRefGoogle Scholar
  30. Hölldobler B, Wilson EO (1990) The ants. Springer, BerlinCrossRefGoogle Scholar
  31. Huber P (1810) Recherchez sur les Meœrs des Fourmis lndigenes. JJ Paschoud, ParisGoogle Scholar
  32. Kennedy P, Baron G, Qiu B et al (2017) Deconstructing superorganisms and societies to address big questions in biology. Trends Ecol Evol. doi:10.1016/j.tree.2017.08.004 PubMedGoogle Scholar
  33. Le Breton J, Fourcassie V (2004) Information transfer during recruitment in the ant Lasius niger L. (Hymenoptera: Formicidae). Behav Ecol Sociobiol 55(3):242–250CrossRefGoogle Scholar
  34. Lenoir A (1982) An informational analysis of antennal communication during trophallaxis in the ants Myrmica Rubra L. Behav Processes 7:27–35CrossRefPubMedGoogle Scholar
  35. Lenoir A, Depickère S, Devers S et al (2009) Hydrocarbons in the ant Lasius niger: from the cuticle to the nest and home range marking. J Chem Ecol 35:913–921. doi:10.1007/s10886-009-9669-6 CrossRefPubMedGoogle Scholar
  36. McCabe S, Farina W, Josens R (2006) Antennation of nectar-receivers encodes colony needs and food-source profitability in the ant Camponotus mus. Insectes Soc 53:356–361. doi:10.1007/s00040-006-0881-x CrossRefGoogle Scholar
  37. Novgorodova TA (2006) Experimental investigation of information transmission in Formica pratensis (Hymenoptera, Formicidae) using “binary tree” maze. Entomol Rev 86:287–293. doi:10.1134/S0013873806030043 CrossRefGoogle Scholar
  38. Novgorodova TA (2015) Organization of honeydew collection by foragers of different species of ants (Hymenoptera: Formicidae): effect of colony size and species specificity. Eur J Entomol 112:688–697. doi:10.14411/eje.2015.077 Google Scholar
  39. Ozaki M, Wada-Katsumata A, Fujikawa K et al (2005) Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 309:311–314. doi:10.1126/science.1105244 CrossRefPubMedGoogle Scholar
  40. Reznikova Z (2007) Dialog with black box: using information theory to study animal language behaviour. Acta Ethologica 10:1–12CrossRefGoogle Scholar
  41. Reznikova Z (2008) Experimental paradigms for studying cognition and communication in ants (Hymenoptera: Formicidae). Myrmecol News 11:201–214Google Scholar
  42. Reznikova Z (2017) Studying animal language without translation: an insight from ants. Springer, ChamCrossRefGoogle Scholar
  43. Reznikova Z, Ryabko B (1994) Experimental study of the ants’ communication system with the application of the information theory approach. Memorab Zool 48:219–236Google Scholar
  44. Reznikova Z, Ryabko B (2001) A study of ants’ numerical competence. Comput Inf Sci 6(15):1–12Google Scholar
  45. Roces F (1990) Olfactory conditioning during the recruitment process in a leaf-cutting ant. Oecologia 83:261–262. doi:10.1007/BF00317762 CrossRefPubMedGoogle Scholar
  46. Roces F (1994) Odour learning and decision-making during food collection in the leaf-cutting ant Acromyrmex lundi. Insectes Soc 41:235–239. doi:10.1007/BF01242294 CrossRefGoogle Scholar
  47. Salo O, Rosengren R (2001) Memory of location and site recognition in the ant Formica uralensis (Hymenoptera: Formicidae). Ethology 107:737–752CrossRefGoogle Scholar
  48. Seifert B (2007) Die Ameisen Mittel-und Nordeuropas. Lutra Verlag, AugsburgGoogle Scholar
  49. Smith JD, Beran MJ, Couchman JJ, Coutinho MVC (2008) The comparative study of metacognition: sharper paradigms, safer inferences. Psychon Bull Rev 15:679–691. doi:10.3758/PBR.15.4.679 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sudd JH (1967) An introduction to the behaviour of ants. Edward Arnold, LondonGoogle Scholar
  51. von Frisch K (1923) Über die” Sprache” der Bienen. Zool Jb Physiol 40:1–186Google Scholar
  52. von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, CambridgeGoogle Scholar
  53. von Thienen W, Metzler D, Choe D-H, Witte V (2014) Pheromone communication in ants: a detailed analysis of concentration-dependent decisions in three species. Behav Ecol Sociobiol 68:1611–1627. doi:10.1007/s00265-014-1770-3 CrossRefGoogle Scholar
  54. Wasmann E (1905) Comparative studies in the psychology of ants and of higher animals, 2nd edn. B. Herder, LondonGoogle Scholar
  55. Wehner R, Menzel R (1990) Do insects have cognitive maps? Annu Rev Neurosci 13:403–414CrossRefPubMedGoogle Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2017

Authors and Affiliations

  1. 1.Institute of ZoologyUniversität RegensburgRegensburgGermany
  2. 2.Department of Behavioral Physiology and Sociobiology, BiocenterUniversity of WürzburgWürzburgGermany
  3. 3.Department of Biology and York Centre for Complex Systems AnalysisUniversity of YorkYorkUK
  4. 4.Animal and Plant SciencesUniversity of SheffieldSheffieldUK

Personalised recommendations