Skip to main content
Log in

Thermal tolerances differ between diurnal and nocturnal foragers in the ant Ectatomma ruidum

  • Short Communication
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Physiological constraints can limit thermal niche breadth in organisms, particularly for small-bodied ectotherms. Daily temperature fluctuations often surpass annual (seasonal) temperature variation in the tropics, suggesting diel temperature cycles could drive thermal specialization by individuals that are active at different times of the day. We used foraging workers of the Neotropical ant Ectatomma ruidum to assess whether diurnally and nocturnally active workers differed in thermal tolerance. We compared critical thermal maxima (CTmax) of nocturnal and diurnal foraging workers to explore thermal niche specialization over the diel cycle. We predicted that diurnally active workers would have higher CTmax because they occupy a warmer thermal niche. As predicted, diurnal foragers exhibited significantly higher CTmax (mean 1.1 °C difference) than nocturnal foragers. Diurnal and nocturnal foragers were similar in body size, and there was no relationship between worker size and CTmax. We discuss possible mechanisms for this pattern, and the implications of within- versus between-colony differences in CTmax.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Addo-Bediako A, Chown SL, Gaston KJ (2000) Thermal tolerance, climatic variability and latitude. Proc R Soc B 267:739–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguilar-Velasco RG, Poteaux C, Meza-Lázaro R, Lachaud JP, Dubovikoff D, Zaldívar-Riverón A (2016) Uncovering species boundaries in the Neotropical ant complex Ectatomma ruidum (Ectatomminae) under the presence of nuclear mitochondrial paralogues. Zool J Linn Soc. doi:10.1111/zoj.12407

    Google Scholar 

  • Andersen LH, Kristensen TN, Loeschcke V, Toft S, Mayntz D (2010) Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster. J Insect Phys 56:336–340

    Article  CAS  Google Scholar 

  • Angilletta MJ, Wilson RS, Niehaus AC, Sears MW, Navas CA, Ribeiro PL (2007) Urban physiology: city ants possess high heat tolerance. PLoS One 2:e258–e254

    Article  PubMed  PubMed Central  Google Scholar 

  • Baudier KM, Mudd AE, Erickson SC, O’Donnell S (2015) Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae). J Anim Ecol 84:1322–1330

    Article  PubMed  Google Scholar 

  • Baudier KM, O’Donnell S (2016) Structure and thermal biology of subterranean army ant bivouacs in a tropical montane forest. Insect Soc 63:467–476

    Article  Google Scholar 

  • Bestelmeyer BT (2000) The trade-off between thermal tolerance and behavioural dominance in a subtropical South American ant community. J Anim Ecol 69:998–1009

    Article  Google Scholar 

  • Breed MD, Abel P, Bleuze TJ, Denton SE (1990) Thievery, home ranges, and nestmate recognition in Ectatomma ruidum. Oecologia 84:117–121

    Article  PubMed  Google Scholar 

  • Breed MD, Snyder LE, Lynn TL, Morhart JA (1992) Acquired chemical camouflage in a tropical ant. Anim Behav 44:519–523

    Article  Google Scholar 

  • Cahan SH, Nguyen AD, Stanton-Geddes J, Penick CA, Hernáiz-Hernández Y, DeMarco BB, Gotelli NJ (2017) Modulation of the heat shock response is associated with acclimation to novel temperatures but not adaptation to climatic variation in the ants Aphaenogaster picea and A. rudis. Comp Biochem Physiol A 204:113–120

    Article  Google Scholar 

  • Cerda X, Retana J, Cros S (1998) Critical thermal limits in Mediterranean ant species: trade-off between mortality risk and foraging performance. Funct Ecol 12:45–55

    Article  Google Scholar 

  • Clark DA, Piper SC, Keeling CD, Clark DB (2003) Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. Proc Natl Acad Sci 100:5852–5857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clusella-Trullas S, Chown SL (2014) Lizard thermal trait variation at multiple scales: a review. J Comp Physiol B 184:5–21

    Article  PubMed  Google Scholar 

  • Colinet H, Sinclair BJ, Vernon P, Renault D (2015) Insects in fluctuating thermal environments. Annu Rev Entomol 60:123–140

    Article  CAS  PubMed  Google Scholar 

  • Colwell RK (2013) EstimateS, Version 9.1: Statistical Estimation of Species Richness and Shared Species from Samples (Software and User’s Guide)

  • Da Rocha HR, Goulden ML, Miller SD, Menton MC, Pinto LD, de Freitas HC (2004) Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia. Ecol Appl 14:22–32

    Article  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci 105:6668–6672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Robledo C, Kuprewicz EK, Staines CL, Erwin TL, Kress WJ (2016) Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc Natl Acad Sci 113:680–685

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghalambor CK, Huey RB, Martin PR, Tewksbury JJ, Wang G (2006) Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr Comp Biol 46:5–17

    Article  PubMed  Google Scholar 

  • Gunderson AR, Leal M (2015) Patterns of thermal constraint on ectotherm activity. Am Nat 185:653–664

    Article  PubMed  Google Scholar 

  • Hoffmann AA, Chown SL, Clusell-Trullas S (2013) Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct Ecol 27:934–949

    Article  Google Scholar 

  • Janzen DH (1967) Why mountain passes are higher in the tropics. Am Nat 101:233–249

    Article  Google Scholar 

  • Jayatilaka PA, Narendra SF, Reid P, Cooper J, Zeil (2011) Different effects of temperature on foraging activity schedules in sympatric Myrmecia ants. J Exp Biol 214:2730–2738

    Article  PubMed  Google Scholar 

  • Jumbam KR, Jackson S, Terblanche JS, McGeoch MA, Chown SL (2008) Acclimation effects on critical and lethal thermal limits of workers of the Argentine ant, Linepithema humile. J Insect Physiol 54:1008–1014

    Article  CAS  PubMed  Google Scholar 

  • Kaspari M, Clay NA, Lucas J, Yanoviak SP, Kay A (2014) Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Global Change Biol 21:1092–1102

    Article  Google Scholar 

  • Kay CAR, Whitford WG (1978) Critical thermal limits of desert honey ants: possible ecological implications. Physiol Zool 51:206–213

    Article  Google Scholar 

  • Klotz JH (1984) Diel differences in foraging in two ant species (Hymenoptera: Formicidae). J Kans Entomol Soc 57:111–118

    Google Scholar 

  • Kristensen TN, Loeschcke V, Hoffmann AA (2007) Can artificially selected phenotypes influence a component of field fitness? Thermal selection and fly performance under thermal extremes. Proc R Soc B 274:771–778

    Article  PubMed  Google Scholar 

  • Lazaridis M (2011) First principles of meteorology and air pollution. Environ Pollut 19. doi:10.1007/978-94-007-0162-5$42

  • Longino JT (2010) Ants of Costa Rica. The Evergreen State College, Olympia

    Google Scholar 

  • McGlynn TP, Graham R, Wilson J, Emerson J, Jandt JM, Jahren AH (2015) Distinct types of foragers in the ant Ectatomma ruidum: typical foragers and furtive thieves. Anim Behav 109:243–247

    Article  Google Scholar 

  • Morecroft MD, Taylor ME, Oliver HR (1998) Air and soil microclimates of deciduous woodland compared to an open site. Agric Forest Meteorol 90:141–156

    Article  Google Scholar 

  • Murphy PG, Lugo AE (1986) Ecology of tropical dry forest. Annu Rev Ecol Syst 17:67–88

    Article  Google Scholar 

  • Navas CA (1996) Metabolic physiology, locomotor performance, and thermal niche breadth in neotropical anurans. Physiol Zool 69:1481–1501

    Article  Google Scholar 

  • Nickele MA, Reis Filho W, Pie MR, Penteado SDRC (2016) Daily foraging activity of Acromyrmex (Hymenoptera: Formicidae) leaf-cutting ants. Sociobiology 63:645–650

    Article  Google Scholar 

  • Nyamukondiwa C, Terblanche JS (2009) Thermal tolerance in adult Mediterranean and Natal fruit flies (Ceratitis capitata and Ceratitis rosa): effects of age, gender and feeding status. J Therm Biol 34:406–414

    Article  Google Scholar 

  • Oberg EW, Toro I, Pelini SL (2012) Characterization of the thermal tolerances of forest ants of New England. Insect Soc 59:167–174

    Article  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New York

    Book  Google Scholar 

  • Pol R, de Casenave (2004) Activity Patterns of Harvester Ants Pogonomyrmex pronotalis and Pogonomyrmex rastratus in the Central Monte Desert, Argentina. J Insect Behav 17:647–661

    Article  Google Scholar 

  • Powers, JS, Becknell, JM, Irving, Perez-Aviles JD (2009) Diversity and structure of regenerating tropical dry forests in Costa Rica: geographic patterns and environmental drivers. Forest Ecol Manag 258:959–970

    Article  Google Scholar 

  • Ribeiro PL, Camacho A, Navas CA (2012) Considerations for assessing maximum critical temperatures in small ectothermic animals: insights from leaf-cutting ants. PLoS One 7:e32083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryti RT, Case TJ (1992) The role of neighborhood competition in the spacing and diversity of ant communities. Am Nat 139:355–374

    Article  Google Scholar 

  • Scheffers BR, Edwards DP, Macdonald SL, Senior RA, Andriamahohatra LR, Roslan N, Rogers AM, Haugaasen T, Wright P, Williams SE (2016) Extreme thermal heterogeneity in structurally complex tropical rain forests. Biotropica. doi:10.1111/btp.12355

    Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Stuble KL, Rodriguez-Cabal MA, McCormick GL, Jurić I, Dunn RR, Sanders NJ (2013) Tradeoffs, competition, and coexistence in eastern deciduous forest ant communities. Oecologia 171:981–992

    Article  PubMed  Google Scholar 

  • Warren RJ, Chick L (2013) Upward ant distribution shift corresponds with minimum, not maximum, temperature tolerance. Global Change Biol 19:2082–2088

    Article  Google Scholar 

  • Whitford WG (1978) Structure and seasonal activity of Chihuahua desert ant communities. Insect Soc 25:79–88

    Article  Google Scholar 

Download references

Acknowledgements

Kaitlin Baudier, Jennifer Stynoski, Patricia Salerno and three anonymous reviewers made valuable comments on the paper. Thanks to the staff of the OTS Palo Verde Biological Station for logistical assistance. S. O’D. was supported by Drexel University startup funds and the Organization for Tropical Studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O’Donnell.

Appendix: Raw data

Appendix: Raw data

Colony #

Individual

CTmax (°C)

Time (min)

Body length (mm)

Species

Date: 11 June 2016

Mapache Trail at 4:10 am

 1

A

44

130

9.2

E. ruidum

 1

B

43

120

9.8

E. ruidum

 1

C

43

120

8.1

E. ruidum

 2

A

43

120

9.4

E. ruidum

 2

B

43

120

8.2

E. ruidum

 3

A

43

120

7.4

E. ruidum

 3

B

43

120

8.7

E. ruidum

 3

C

42

115

7.5

E. ruidum

 4

A

42

115

8.3

E. ruidum

 4

B

42

115

9.1

E. ruidum

 4

C

41

100

8.8

E. ruidum

Date: 11 June 2016

Mapache Trail at 2:35 pm

 5

A

44

105

7.5

E. ruidum

 6

A

44

105

6.8

E. ruidum

 6

B

44

105

8.3

E. ruidum

 6

C

44

105

7.6

E. ruidum

 7

A

44

82

7.9

E. ruidum

 7

B

44

82

8.8

E. ruidum

 7

C

44

82

9

E. ruidum

Date: 12 June 2016

Mapache Trial at 4:13 am

 8

A

43

97

6.9

E. ruidum

 8

B

44

102

6.8

E. ruidum

 9

A

42

88

6.9

E. ruidum

 9

B

44

102

7.2

E. ruidum

 9

C

44

102

7.5

E. ruidum

Date: 12 June 2016

Mapache Trial at 1:40 pm

 10

A

44

96

6.9

E. ruidum

 10

B

44

96

7.5

E. ruidum

 11

A

44

96

7.5

E. ruidum

 11

B

44

96

7.1

E. ruidum

 11

C

44

96

7.1

E. ruidum

 12

A

44

96

7.5

E. ruidum

 12

B

44

96

6.5

E. ruidum

 13

A

44

96

7.3

E. ruidum

 13

B

44

96

7.5

E. ruidum

 13

C

45

102

7

E. ruidum

 14

A

44

96

7.5

E. ruidum

 14

B

43

90

7.1

E. ruidum

 14

C

44

96

8

E. ruidum

 15

A

44

96

8

E. ruidum

 15

B

43

90

8.7

E. ruidum

 15

C

44

96

6.2

E. ruidum

 16

A

44

96

8.1

E. ruidum

 16

B

44

96

7.3

E. ruidum

 16

C

44

96

7.9

E. ruidum

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esch, C., Jimenez, J.P., Peretz, C. et al. Thermal tolerances differ between diurnal and nocturnal foragers in the ant Ectatomma ruidum . Insect. Soc. 64, 439–444 (2017). https://doi.org/10.1007/s00040-017-0555-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-017-0555-x

Keywords

Navigation